Cargando…
Expression Profiling of mRNAs and Long Non-Coding RNAs in Aged Mouse Olfactory Bulb
Age-related decline in olfactory function affects the quality of life in elderly people and also potentially represents an early clinical symptom of neurodegenerative disorder. Olfactory bulb (OB) plays a central role in olfactory information transmitting and signal processing. The mechanisms underl...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5437011/ https://www.ncbi.nlm.nih.gov/pubmed/28522862 http://dx.doi.org/10.1038/s41598-017-02329-4 |
Sumario: | Age-related decline in olfactory function affects the quality of life in elderly people and also potentially represents an early clinical symptom of neurodegenerative disorder. Olfactory bulb (OB) plays a central role in olfactory information transmitting and signal processing. The mechanisms underlying this impairment remain unclear. In the current study, microarray was used to investigate differentially expressed protein coding genes (PCGs) and long non-coding RNAs (lncRNAs) in OBs from three groups of mice of different ages (2 months-old young adults, 6 months-old mature adults and 20 months-old aged adults), for their potential roles in olfactory impairment. Gene Ontology and pathway analysis results showed that the differentially expressed PCGs in the OBs from aged mice were mainly associated with signal transduction, regulation of gene expression and cellular microenvironment. Similarly, gene set enrichment analysis identified two differentially and inversely expressed lncRNAs (NONMMUT004524 and NONMMUT000384), both of which were significantly associated with neuroactive ligand-receptor interaction pathway in the OBs of aged mice. These findings suggest that a decline of olfactory function in aged mice may be linked to differential expression of specific lncRNAs and their potentially adverse effects on the neuroactive ligand-receptor interaction pathway in the OB. |
---|