Cargando…
Movement protein of Apple chlorotic leaf spot virus is genetically unstable and negatively regulated by Ribonuclease E in E. coli
Movement protein (MP) of Apple chlorotic leaf spot virus (ACLSV) belongs to “30 K” superfamily of proteins and members of this family are known to show a wide array of functions. In the present study this gene was found to be genetically unstable in E. coli when transformed DH5α cells were grown at...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5437062/ https://www.ncbi.nlm.nih.gov/pubmed/28522867 http://dx.doi.org/10.1038/s41598-017-02375-y |
Sumario: | Movement protein (MP) of Apple chlorotic leaf spot virus (ACLSV) belongs to “30 K” superfamily of proteins and members of this family are known to show a wide array of functions. In the present study this gene was found to be genetically unstable in E. coli when transformed DH5α cells were grown at 28 °C and 37 °C. However, genetic instability was not encountered at 20 °C. Heterologous over expression failed despite the use of different transcriptional promoters and translational fusion constructs. Total cell lysate when subjected to western blotting using anti-ACLSV MP antibodies, showed degradation/cleavage of the expressed full-length protein. This degradation pointed at severe proteolysis or instability of the corresponding mRNA. Predicted secondary structure analysis of the transcript revealed a potential cleavage site for an endoribonuclease (RNase E) of E. coli. The negating effect of RNase E on transcript stability and expression was confirmed by northern blotting and quantitative RT-PCR of the RNA extracted from RNase E temperature sensitive mutant (strain N3431). The five fold accumulation of transcripts at non-permissive temperature (43 °C) suggests the direct role of RNase E in regulating the expression of ACLSV MP in E. coli. |
---|