Cargando…
Comparison of IVA and GIG-ICA in Brain Functional Network Estimation Using fMRI Data
Spatial group independent component analysis (GICA) methods decompose multiple-subject functional magnetic resonance imaging (fMRI) data into a linear mixture of spatially independent components (ICs), some of which are subsequently characterized as brain functional networks. Group information guide...
Autores principales: | Du, Yuhui, Lin, Dongdong, Yu, Qingbao, Sui, Jing, Chen, Jiayu, Rachakonda, Srinivas, Adali, Tulay, Calhoun, Vince D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5437155/ https://www.ncbi.nlm.nih.gov/pubmed/28579940 http://dx.doi.org/10.3389/fnins.2017.00267 |
Ejemplares similares
-
Preserving subject variability in group fMRI analysis: performance evaluation of GICA vs. IVA
por: Michael, Andrew M., et al.
Publicado: (2014) -
Combination of Resting State fMRI, DTI, and sMRI Data to Discriminate Schizophrenia by N-way MCCA + jICA
por: Sui, Jing, et al.
Publicado: (2013) -
Multimodal fusion of multiple rest fMRI networks and MRI gray matter via parallel multilink joint ICA reveals highly significant function/structure coupling in Alzheimer's disease
por: Khalilullah, K. M. Ibrahim, et al.
Publicado: (2023) -
Effect of Spatial Smoothing on Task fMRI ICA and Functional Connectivity
por: Chen, Zikuan, et al.
Publicado: (2018) -
NeuroMark: An automated and adaptive ICA based pipeline to identify reproducible fMRI markers of brain disorders
por: Du, Yuhui, et al.
Publicado: (2020)