Cargando…
Face classification using electronic synapses
Conventional hardware platforms consume huge amount of energy for cognitive learning due to the data movement between the processor and the off-chip memory. Brain-inspired device technologies using analogue weight storage allow to complete cognitive tasks more efficiently. Here we present an analogu...
Autores principales: | Yao, Peng, Wu, Huaqiang, Gao, Bin, Eryilmaz, Sukru Burc, Huang, Xueyao, Zhang, Wenqiang, Zhang, Qingtian, Deng, Ning, Shi, Luping, Wong, H.-S. Philip, Qian, He |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5437298/ https://www.ncbi.nlm.nih.gov/pubmed/28497781 http://dx.doi.org/10.1038/ncomms15199 |
Ejemplares similares
-
Weighted Synapses Without Carry Operations for RRAM-Based Neuromorphic Systems
por: Liao, Yan, et al.
Publicado: (2018) -
A compute-in-memory chip based on resistive random-access memory
por: Wan, Weier, et al.
Publicado: (2022) -
Analog memristive synapse based on topotactic phase transition for high-performance neuromorphic computing and neural network pruning
por: Mou, Xing, et al.
Publicado: (2021) -
Face familiarity detection with complex synapses
por: Ji-An, Li, et al.
Publicado: (2022) -
Memristor-based analogue computing for brain-inspired sound localization with in situ training
por: Gao, Bin, et al.
Publicado: (2022)