Cargando…
Fast and Efficient Four‑class Motor Imagery Electroencephalography Signal Analysis Using Common Spatial Pattern–Ridge Regression Algorithm for the Purpose of Brain–Computer Interface
Brain–computer interfaces enable users to control devices with electroencephalographic (EEG) activity from the scalp or with single-neuron activity from within the brain. One of the most challenging issues in this regard is the balance between the accuracy of brain signals from patients and the spee...
Autores principales: | Seifzadeh, Sahar, Rezaei, Mohammad, Faez, Karim, Amiri, Mahmood |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5437766/ https://www.ncbi.nlm.nih.gov/pubmed/28553580 |
Ejemplares similares
-
Classification of Four-Class Motor Imagery Employing Single-Channel Electroencephalography
por: Ge, Sheng, et al.
Publicado: (2014) -
Fractional ridge regression: a fast, interpretable reparameterization of ridge regression
por: Rokem, Ariel, et al.
Publicado: (2020) -
Electroencephalography-Based Brain–Computer Interface Motor Imagery Classification
por: Mohammadi, Ehsan, et al.
Publicado: (2021) -
Peak Detection with Online Electroencephalography (EEG) Artifact Removal for Brain–Computer Interface (BCI) Purposes
por: Benda, Mihaly, et al.
Publicado: (2019) -
Ridge Regression in Prediction Problems: Automatic Choice of the Ridge Parameter
por: Cule, Erika, et al.
Publicado: (2013)