Cargando…
Segmentation of White Blood Cells From Microscopic Images Using a Novel Combination of K-Means Clustering and Modified Watershed Algorithm
Recognition of white blood cells (WBCs) is the first step to diagnose some particular diseases such as acquired immune deficiency syndrome, leukemia, and other blood-related diseases that are usually done by pathologists using an optical microscope. This process is time-consuming, extremely tedious,...
Autores principales: | Ghane, Narjes, Vard, Alireza, Talebi, Ardeshir, Nematollahy, Pardis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5437768/ https://www.ncbi.nlm.nih.gov/pubmed/28553582 |
Ejemplares similares
-
Classification of chronic myeloid leukemia cell subtypes based on microscopic image analysis
por: Ghane, Narjes, et al.
Publicado: (2019) -
Segmentation of White Blood Cells through Nucleus Mark Watershed Operations and Mean Shift Clustering
por: Liu, Zhi, et al.
Publicado: (2015) -
Recognition of Acute Lymphoblastic Leukemia Cells in Microscopic Images Using K-Means Clustering and Support Vector Machine Classifier
por: Amin, Morteza Moradi, et al.
Publicado: (2015) -
Nucleus and cytoplasm segmentation in microscopic images using K-means clustering and region growing
por: Sarrafzadeh, Omid, et al.
Publicado: (2015) -
Graphical Image Region Extraction with K-Means Clustering and Watershed
por: Jardim, Sandra, et al.
Publicado: (2022)