Cargando…

Disease-related gene module detection based on a multi-label propagation clustering algorithm

Detecting disease-related gene modules by analyzing gene expression data is of great significance. It is helpful for exploratory analysis of the interaction mechanisms of genes under complex disease phenotypes. The multi-label propagation algorithm (MLPA) has been widely used in module detection for...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Xue, Zhang, Han, Quan, Xiongwen, Liu, Zhandong, Yin, Yanbin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5438150/
https://www.ncbi.nlm.nih.gov/pubmed/28542379
http://dx.doi.org/10.1371/journal.pone.0178006
Descripción
Sumario:Detecting disease-related gene modules by analyzing gene expression data is of great significance. It is helpful for exploratory analysis of the interaction mechanisms of genes under complex disease phenotypes. The multi-label propagation algorithm (MLPA) has been widely used in module detection for its fast and easy implementation. The accuracy of MLPA greatly depends on the connections between nodes, and most existing research focuses on measuring the similarity between nodes. However, MLPA does not perform well with loose connections between disease-related genes. Moreover, the biological significance of modules obtained by MLPA has not been demonstrated. To solve these problems, we designed a double label propagation clustering algorithm (DLPCA) based on MLPA to study Huntington’s disease. In DLPCA, in addition to category labels, we introduced pathogenic labels to supervise the process of multi-label propagation clustering. The pathogenic labels contain pathogenic information about disease genes and the hierarchical structure of gene expression data. Experimental results demonstrated the superior performance of DLPCA compared with other conventional gene-clustering algorithms.