Cargando…

Electro-Tactile Stimulation Enhances Cochlear Implant Speech Recognition in Noise

For cochlear implant users, combined electro-acoustic stimulation (EAS) significantly improves the performance. However, there are many more users who do not have any functional residual acoustic hearing at low frequencies. Because tactile sensation also operates in the same low frequencies (<500...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Juan, Sheffield, Benjamin, Lin, Payton, Zeng, Fan-Gang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5438362/
https://www.ncbi.nlm.nih.gov/pubmed/28526871
http://dx.doi.org/10.1038/s41598-017-02429-1
Descripción
Sumario:For cochlear implant users, combined electro-acoustic stimulation (EAS) significantly improves the performance. However, there are many more users who do not have any functional residual acoustic hearing at low frequencies. Because tactile sensation also operates in the same low frequencies (<500 Hz) as the acoustic hearing in EAS, we propose electro-tactile stimulation (ETS) to improve cochlear implant performance. In ten cochlear implant users, a tactile aid was applied to the index finger that converted voice fundamental frequency into tactile vibrations. Speech recognition in noise was compared for cochlear implants alone and for the bimodal ETS condition. On average, ETS improved speech reception thresholds by 2.2 dB over cochlear implants alone. Nine of the ten subjects showed a positive ETS effect ranging from 0.3 to 7.0 dB, which was similar to the amount of the previously-reported EAS benefit. The comparable results indicate similar neural mechanisms that underlie both the ETS and EAS effects. The positive results suggest that the complementary auditory and tactile modes also be used to enhance performance for normal hearing listeners and automatic speech recognition for machines.