Cargando…

Experimental linear-optics simulation of ground-state of an Ising spin chain

We experimentally demonstrate a photonic quantum simulator: by using a two-spin Ising chain (an isolated dimer) as an example, we encode the wavefunction of the ground state with a pair of entangled photons. The effect of magnetic fields, leading to a critical modification of the correlation between...

Descripción completa

Detalles Bibliográficos
Autores principales: Xue, Peng, Zhan, Xian, Bian, Zhihao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5438377/
https://www.ncbi.nlm.nih.gov/pubmed/28526885
http://dx.doi.org/10.1038/s41598-017-02571-w
Descripción
Sumario:We experimentally demonstrate a photonic quantum simulator: by using a two-spin Ising chain (an isolated dimer) as an example, we encode the wavefunction of the ground state with a pair of entangled photons. The effect of magnetic fields, leading to a critical modification of the correlation between two spins, can be simulated by just local operations. With the ratio of simulated magnetic fields and coupling strength increasing, the ground state of the system changes from a product state to an entangled state and back to another product state. The simulated ground states can be distinguished and the transformations between them can be observed by measuring correlations between photons. This simulation of the Ising model with linear quantum optics opens the door to the future studies which connect quantum information and condensed matter physics.