Cargando…
Multi-label Learning for Predicting the Activities of Antimicrobial Peptides
Antimicrobial peptides (AMPs) are peptide antibiotics with a broad spectrum of antimicrobial activities. Activity prediction of AMPs from their amino acid sequences is of great therapeutic importance but imposes challenges on prediction methods due to label interactions. In this paper we propose a n...
Autores principales: | Wang, Pu, Ge, Ruiquan, Liu, Liming, Xiao, Xuan, Li, Ye, Cai, Yunpeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5438384/ https://www.ncbi.nlm.nih.gov/pubmed/28526820 http://dx.doi.org/10.1038/s41598-017-01986-9 |
Ejemplares similares
-
Author Correction: Multi-label Learning for Predicting the Activities of Antimicrobial Peptides
por: Wang, Pu, et al.
Publicado: (2018) -
Integrating transformer and imbalanced multi-label learning to identify antimicrobial peptides and their functional activities
por: Pang, Yuxuan, et al.
Publicado: (2022) -
EnACP: An Ensemble Learning Model for Identification of Anticancer Peptides
por: Ge, Ruiquan, et al.
Publicado: (2020) -
Editorial: Machine learning for peptide structure, function, and design
por: Ge, Ruiquan, et al.
Publicado: (2022) -
i2APP: A Two-Step Machine Learning Framework For Antiparasitic Peptides Identification
por: Jiang, Minchao, et al.
Publicado: (2022)