Cargando…
Practical application of the Average Information Content Maximization (AIC-MAX) algorithm: selection of the most important structural features for serotonin receptor ligands
The Average Information Content Maximization algorithm (AIC-MAX) based on mutual information maximization was recently introduced to select the most discriminatory features. Here, this methodology was applied to select the most significant bits from the Klekota-Roth fingerprint for serotonin recepto...
Autores principales: | Warszycki, Dawid, Śmieja, Marek, Kafel, Rafał |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5438429/ https://www.ncbi.nlm.nih.gov/pubmed/28185036 http://dx.doi.org/10.1007/s11030-017-9729-8 |
Ejemplares similares
-
Average Information Content Maximization—A New Approach for Fingerprint Hybridization and Reduction
por: Śmieja, Marek, et al.
Publicado: (2016) -
Bioisosteric Matrices for Ligands of Serotonin Receptors
por: Warszycki, Dawid, et al.
Publicado: (2015) -
Asymmetric Clustering Index in a Case Study of 5-HT(1A) Receptor Ligands
por: Śmieja, Marek, et al.
Publicado: (2014) -
A Linear Combination of Pharmacophore Hypotheses as a New Tool in Search of New Active Compounds – An Application for 5-HT(1A) Receptor Ligands
por: Warszycki, Dawid, et al.
Publicado: (2013) -
Model Averaging with AIC Weights for Hypothesis Testing of Hormesis at Low Doses
por: Kim, Steven B., et al.
Publicado: (2017)