Cargando…
Normal Theory GLS Estimator for Missing Data: An Application to Item-Level Missing Data and a Comparison to Two-Stage ML
Structural equation models (SEMs) can be estimated using a variety of methods. For complete normally distributed data, two asymptotically efficient estimation methods exist: maximum likelihood (ML) and generalized least squares (GLS). With incomplete normally distributed data, an extension of ML cal...
Autores principales: | Savalei, Victoria, Rhemtulla, Mijke |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5439014/ https://www.ncbi.nlm.nih.gov/pubmed/28588523 http://dx.doi.org/10.3389/fpsyg.2017.00767 |
Ejemplares similares
-
Normal Theory Two-Stage ML Estimator When Data Are Missing at the Item Level
por: Savalei, Victoria, et al.
Publicado: (2017) -
Two-stage maximum likelihood approach for item-level missing data in regression
por: Chen, Lihan, et al.
Publicado: (2020) -
Three Sample Estimates of Fraction of Missing Information From Full Information Maximum Likelihood
por: Chen, Lihan, et al.
Publicado: (2021) -
Cognitive Diagnosis Modeling Incorporating Item-Level Missing Data Mechanism
por: Shan, Na, et al.
Publicado: (2020) -
The (Ir)Responsibility of (Under)Estimating Missing Data
por: Fernández-García, María P., et al.
Publicado: (2018)