Cargando…

The Effect of FRAX on the Prediction of Osteoporotic Fractures in Urban Middle-aged and Elderly Healthy Chinese Adults

OBJECTIVE: We aimed to analyze the applicability of a fracture risk assessment tool for the prediction of osteoporotic fractures in middle-aged and elderly healthy Chinese adults. METHODS: A standard questionnaire was administered, and bone mineral density was measured in residents visiting the Dong...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Jun, Wang, Xuejun, Fang, Zhen, Lu, Nanjia, Han, Liyuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5439115/
https://www.ncbi.nlm.nih.gov/pubmed/28591341
http://dx.doi.org/10.6061/clinics/2017(05)06
Descripción
Sumario:OBJECTIVE: We aimed to analyze the applicability of a fracture risk assessment tool for the prediction of osteoporotic fractures in middle-aged and elderly healthy Chinese adults. METHODS: A standard questionnaire was administered, and bone mineral density was measured in residents visiting the Dongliu Street Community Health Service Center. Paired t-tests were used to compare the FRAX-based probabilities of fractures estimated with and without consideration of bone mineral density. Risk stratification and partial correlation analyses were applied to analyze the associations between FRAX-based probabilities and body mass index or bone mineral density at different sites. RESULTS: A total of 444 subjects were included in this study. Of these subjects, 175 (39.59%) were diagnosed as osteoporotic, and 208 (47.06%) were diagnosed as osteopenic. The Kappa value for the detection of osteoporosis at the L1-L4 lumbar spine and femoral neck was 0.314. The FRAX-based 10-year major osteoporotic fracture probability and hip osteoporotic fracture probability estimated without considering bone mineral density were 4.93% and 1.64%, respectively; when estimated while considering bone mineral density, these probabilities were 4.97% and 1.54%, respectively. A significant positive association was observed between the FRAX-based fracture probabilities estimated with and without consideration of bone mineral density, while significant negative associations between body mass index and the estimated FRAX-based fracture probabilities after adjustment for age and the estimated FRAX-based fracture probabilities and femoral neck bone mineral density were identified. These results remained the same after controlling for lumbar spine bone mineral density. CONCLUSIONS: The Chinese FRAX model could predict osteoporotic fracture risk regardless of whether bone mineral density was considered and was especially appropriate for predicting osteoporotic fractures of the femoral neck.