Cargando…

Mesencephalic astrocyte-derived neurotrophic factor reduces cell apoptosis via upregulating HSP70 in SHSY-5Y cells

BACKGROUND: Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a new candidate growth factor for dopaminergic neurons against endoplasmic reticulum stress (ER stress). HSP70 family, a chaperon like heat shock protein family, was proved to be involved in the MANF induced survival pathway i...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Hui, Jiang, Ming, Fu, Xing, Cai, Qiong, Zhang, Jingxing, Yin, Yanxin, Guo, Jia, Yu, Lihua, Jiang, Yun, Liu, Yigang, Feng, Liang, Nie, Zhiyu, Fang, Jianmin, Jin, Lingjing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5439129/
https://www.ncbi.nlm.nih.gov/pubmed/28536652
http://dx.doi.org/10.1186/s40035-017-0082-8
Descripción
Sumario:BACKGROUND: Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a new candidate growth factor for dopaminergic neurons against endoplasmic reticulum stress (ER stress). HSP70 family, a chaperon like heat shock protein family, was proved to be involved in the MANF induced survival pathway in 6-OHDA treated SHSY-5Y cells. However, the ER stress relative transcriptome, in MANF signaling cascades is still investigated. The involvement of HSP70, a 70kd member of HSP70 family, need further to be verified. METHODS: The cell apoptosis was assayed by MTT, TUNEL staining and western blot of cleaved Caspase-3. The differentially expressed genes in SHSY-5Y cells under different conditions (control, 6-OHDA, 6-OHDA + MANF) were investigated by RNA-seq. Expression of HSP70 was further confirmed by real-time PCR. RNAi knockdown for HSP70 was performed to investigate the role of HSP70 in the MANF signaling pathway. RESULTS: MANF inhibits 6-OHDA-induced apoptosis in SHSY-5Y cells. Six ER stress relative genes (HSP70, GRP78, xbp-1, ATF-4, ATF-6, MAPK) were found enriched in 6-OHDA + MANF treatment group. HSP70 was the most significantly up-regulated gene under 6-OHDA + MANF treatment in SHSY-5Y cells. RNAi knockdown for HSP70 inhibits the protective effects of MANF against 6-OHDA toxicity in SHSY-5Y cells. CONCLUSION: MANF exerts a protective role against 6-OHDA induced apoptosis in SHSY-5Y cells via up-regulating some ER stress genes, including HSP70 family members. The HSP70 expression level plays a key role in MANF-mediated survival pathway.