Cargando…
Estimation of genetic connectedness diagnostics based on prediction errors without the prediction error variance–covariance matrix
BACKGROUND: An important issue in genetic evaluation is the comparability of random effects (breeding values), particularly between pairs of animals in different contemporary groups. This is usually referred to as genetic connectedness. While various measures of connectedness have been proposed in t...
Autores principales: | Holmes, John B., Dodds, Ken G., Lee, Michael A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5439142/ https://www.ncbi.nlm.nih.gov/pubmed/28253844 http://dx.doi.org/10.1186/s12711-017-0302-9 |
Ejemplares similares
-
Estimation of prediction error variances via Monte Carlo sampling methods using different formulations of the prediction error variance
por: Hickey, John M, et al.
Publicado: (2009) -
Undesirable effects of covariance matrix techniques for error analysis
por: Seibert, David
Publicado: (1993) -
Accuracy of Whole-Genome Prediction Using a Genetic Architecture-Enhanced Variance-Covariance Matrix
por: Zhang, Zhe, et al.
Publicado: (2015) -
Model errors in tree biomass estimates computed with an approximation to a missing covariance matrix
por: Magnussen, Steen, et al.
Publicado: (2015) -
Robust Adaptive Beamforming with Optimal Covariance Matrix Estimation in the Presence of Gain-Phase Errors
por: Yao, Di, et al.
Publicado: (2020)