Cargando…
A hybrid method for the imputation of genomic data in livestock populations
BACKGROUND: This paper describes a combined heuristic and hidden Markov model (HMM) method to accurately impute missing genotypes in livestock datasets. Genomic selection in breeding programs requires high-density genotyping of many individuals, making algorithms that economically generate this info...
Autores principales: | Antolín, Roberto, Nettelblad, Carl, Gorjanc, Gregor, Money, Daniel, Hickey, John M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5439152/ https://www.ncbi.nlm.nih.gov/pubmed/28253858 http://dx.doi.org/10.1186/s12711-017-0300-y |
Ejemplares similares
-
Accuracy of whole-genome sequence imputation using hybrid peeling in large pedigreed livestock populations
por: Ros-Freixedes, Roger, et al.
Publicado: (2020) -
Evaluation of sequencing strategies for whole-genome imputation with hybrid peeling
por: Ros-Freixedes, Roger, et al.
Publicado: (2020) -
AlphaFamImpute: high-accuracy imputation in full-sib families from genotype-by-sequencing data
por: Whalen, Andrew, et al.
Publicado: (2020) -
Potential of genotyping-by-sequencing for genomic selection in livestock populations
por: Gorjanc, Gregor, et al.
Publicado: (2015) -
Extending long-range phasing and haplotype library imputation algorithms to large and heterogeneous datasets
por: Money, Daniel, et al.
Publicado: (2020)