Cargando…
Zebrafish exposure to environmentally relevant concentration of depleted uranium impairs progeny development at the molecular and histological levels
Uranium is an actinide naturally found in the environment. Anthropogenic activities lead to the release of increasing amounts of uranium and depleted uranium (DU) in the environment, posing potential risks to aquatic organisms due to radiological and chemical toxicity of this radionucleide. Although...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5439696/ https://www.ncbi.nlm.nih.gov/pubmed/28531178 http://dx.doi.org/10.1371/journal.pone.0177932 |
_version_ | 1783237972129218560 |
---|---|
author | Armant, Olivier Gombeau, Kewin Murat El Houdigui, Sophia Floriani, Magali Camilleri, Virginie Cavalie, Isabelle Adam-Guillermin, Christelle |
author_facet | Armant, Olivier Gombeau, Kewin Murat El Houdigui, Sophia Floriani, Magali Camilleri, Virginie Cavalie, Isabelle Adam-Guillermin, Christelle |
author_sort | Armant, Olivier |
collection | PubMed |
description | Uranium is an actinide naturally found in the environment. Anthropogenic activities lead to the release of increasing amounts of uranium and depleted uranium (DU) in the environment, posing potential risks to aquatic organisms due to radiological and chemical toxicity of this radionucleide. Although environmental contaminations with high levels of uranium have already been observed, chronic exposures of non-human species to levels close to the environmental quality standards remain scarcely characterized. The present study focused on the identification of the molecular pathways impacted by a chronic exposure of zebrafish to 20 μg/L of DU during 10 days. The transcriptomic effects were evaluated by the use of the mRNAseq analysis in three organs of adult zebrafish, the brain the testis and the ovaries, and two developmental stages of the adult fish progeny, two-cells embryo and four-days larvae. The results highlight generic effects on the cell adhesion process, but also specific transcriptomic responses depending on the organ or the developmental stage investigated. The analysis of the transgenerational effects of DU-exposure on the four-day zebrafish larvae demonstrate an induction of genes involved in oxidative response (cat, mpx, sod1 and sod2), a decrease of expression of the two hatching enzymes (he1a and he1b), the deregulation of the expression of gene coding for the ATPase complex and the induction of cellular stress. Electron microscopy analysis of skeletal muscles on the four-days larvae highlights significant histological impacts on the ultrastructure of both the mitochondria and the myofibres. In addition, the comparison with the transcriptomic data obtained for the acetylcholine esterase mutant reveals the induction of protein-chaperons in the skeletal muscles of the progeny of fish chronically exposed to DU, pointing towards long lasting effects of this chemical in the muscles. The results presented in this study support the hypothesis that a chronic parental exposure to an environmentally relevant concentration of DU could impair the progeny development with significant effects observed both at the molecular level and on the histological ultrastructure of organs. This study provides a comprehensive transcriptomic dataset useful for ecotoxicological studies on other fish species at the molecular level. It also provides a key DU responsive gene, egr1, which may be a candidate biomarker for monitoring aquatic pollution by heavy metals. |
format | Online Article Text |
id | pubmed-5439696 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-54396962017-06-06 Zebrafish exposure to environmentally relevant concentration of depleted uranium impairs progeny development at the molecular and histological levels Armant, Olivier Gombeau, Kewin Murat El Houdigui, Sophia Floriani, Magali Camilleri, Virginie Cavalie, Isabelle Adam-Guillermin, Christelle PLoS One Research Article Uranium is an actinide naturally found in the environment. Anthropogenic activities lead to the release of increasing amounts of uranium and depleted uranium (DU) in the environment, posing potential risks to aquatic organisms due to radiological and chemical toxicity of this radionucleide. Although environmental contaminations with high levels of uranium have already been observed, chronic exposures of non-human species to levels close to the environmental quality standards remain scarcely characterized. The present study focused on the identification of the molecular pathways impacted by a chronic exposure of zebrafish to 20 μg/L of DU during 10 days. The transcriptomic effects were evaluated by the use of the mRNAseq analysis in three organs of adult zebrafish, the brain the testis and the ovaries, and two developmental stages of the adult fish progeny, two-cells embryo and four-days larvae. The results highlight generic effects on the cell adhesion process, but also specific transcriptomic responses depending on the organ or the developmental stage investigated. The analysis of the transgenerational effects of DU-exposure on the four-day zebrafish larvae demonstrate an induction of genes involved in oxidative response (cat, mpx, sod1 and sod2), a decrease of expression of the two hatching enzymes (he1a and he1b), the deregulation of the expression of gene coding for the ATPase complex and the induction of cellular stress. Electron microscopy analysis of skeletal muscles on the four-days larvae highlights significant histological impacts on the ultrastructure of both the mitochondria and the myofibres. In addition, the comparison with the transcriptomic data obtained for the acetylcholine esterase mutant reveals the induction of protein-chaperons in the skeletal muscles of the progeny of fish chronically exposed to DU, pointing towards long lasting effects of this chemical in the muscles. The results presented in this study support the hypothesis that a chronic parental exposure to an environmentally relevant concentration of DU could impair the progeny development with significant effects observed both at the molecular level and on the histological ultrastructure of organs. This study provides a comprehensive transcriptomic dataset useful for ecotoxicological studies on other fish species at the molecular level. It also provides a key DU responsive gene, egr1, which may be a candidate biomarker for monitoring aquatic pollution by heavy metals. Public Library of Science 2017-05-22 /pmc/articles/PMC5439696/ /pubmed/28531178 http://dx.doi.org/10.1371/journal.pone.0177932 Text en © 2017 Armant et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Armant, Olivier Gombeau, Kewin Murat El Houdigui, Sophia Floriani, Magali Camilleri, Virginie Cavalie, Isabelle Adam-Guillermin, Christelle Zebrafish exposure to environmentally relevant concentration of depleted uranium impairs progeny development at the molecular and histological levels |
title | Zebrafish exposure to environmentally relevant concentration of depleted uranium impairs progeny development at the molecular and histological levels |
title_full | Zebrafish exposure to environmentally relevant concentration of depleted uranium impairs progeny development at the molecular and histological levels |
title_fullStr | Zebrafish exposure to environmentally relevant concentration of depleted uranium impairs progeny development at the molecular and histological levels |
title_full_unstemmed | Zebrafish exposure to environmentally relevant concentration of depleted uranium impairs progeny development at the molecular and histological levels |
title_short | Zebrafish exposure to environmentally relevant concentration of depleted uranium impairs progeny development at the molecular and histological levels |
title_sort | zebrafish exposure to environmentally relevant concentration of depleted uranium impairs progeny development at the molecular and histological levels |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5439696/ https://www.ncbi.nlm.nih.gov/pubmed/28531178 http://dx.doi.org/10.1371/journal.pone.0177932 |
work_keys_str_mv | AT armantolivier zebrafishexposuretoenvironmentallyrelevantconcentrationofdepleteduraniumimpairsprogenydevelopmentatthemolecularandhistologicallevels AT gombeaukewin zebrafishexposuretoenvironmentallyrelevantconcentrationofdepleteduraniumimpairsprogenydevelopmentatthemolecularandhistologicallevels AT muratelhoudiguisophia zebrafishexposuretoenvironmentallyrelevantconcentrationofdepleteduraniumimpairsprogenydevelopmentatthemolecularandhistologicallevels AT florianimagali zebrafishexposuretoenvironmentallyrelevantconcentrationofdepleteduraniumimpairsprogenydevelopmentatthemolecularandhistologicallevels AT camillerivirginie zebrafishexposuretoenvironmentallyrelevantconcentrationofdepleteduraniumimpairsprogenydevelopmentatthemolecularandhistologicallevels AT cavalieisabelle zebrafishexposuretoenvironmentallyrelevantconcentrationofdepleteduraniumimpairsprogenydevelopmentatthemolecularandhistologicallevels AT adamguillerminchristelle zebrafishexposuretoenvironmentallyrelevantconcentrationofdepleteduraniumimpairsprogenydevelopmentatthemolecularandhistologicallevels |