Cargando…
Different microRNA profiles reveal the diverse outcomes induced by EV71 and CA16 infection in human umbilical vein endothelial cells using high-throughput sequencing
Enterovirus 71 (EV71) and Coxsackievirus A16 (CA16) remain the predominant pathogens in hand, foot, and mouth disease (HFMD), but the factors underlying the pathogenesis of EV71 and CA16 infections have not been elucidated. Recently, the functions of microRNAs (miRNAs) in pathogen-host interactions...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5439704/ https://www.ncbi.nlm.nih.gov/pubmed/28531227 http://dx.doi.org/10.1371/journal.pone.0177657 |
_version_ | 1783237974246293504 |
---|---|
author | Song, Jie Hu, Yajie Li, Jiaqi Zheng, Huiwen Wang, Jingjing Guo, Lei Ning, Ruotong Li, Hongzhe Yang, Zening Fan, Haitao Liu, Longding |
author_facet | Song, Jie Hu, Yajie Li, Jiaqi Zheng, Huiwen Wang, Jingjing Guo, Lei Ning, Ruotong Li, Hongzhe Yang, Zening Fan, Haitao Liu, Longding |
author_sort | Song, Jie |
collection | PubMed |
description | Enterovirus 71 (EV71) and Coxsackievirus A16 (CA16) remain the predominant pathogens in hand, foot, and mouth disease (HFMD), but the factors underlying the pathogenesis of EV71 and CA16 infections have not been elucidated. Recently, the functions of microRNAs (miRNAs) in pathogen-host interactions have been highlighted. In the present study, we performed comprehensive miRNA profiling in EV71- and CA16-infected human umbilical vein endothelial cells (HUVECs) at multiple time points using high-throughput sequencing. The results showed that 135 known miRNAs exhibited remarkable differences in expression. Of these, 30 differentially expressed miRNAs presented opposite trends in EV71- and CA16-infected samples. Subsequently, we mainly focused on the 30 key differentially expressed miRNAs through further screening to predict targets. Gene ontology (GO) and pathway analysis of the predicted targets showed the enrichment of 14 biological processes, 9 molecular functions, 8 cellular components, and 85 pathways. The regulatory networks of these miRNAs with predicted targets, GOs, pathways, and co-expression genes were determined, suggesting that miRNAs display intricate regulatory mechanisms during the infection phase. Consequently, we specifically analyzed the hierarchical GO categories of the predicted targets involved in biological adhesion. The results indicated that the distinct changes induced by EV71 and CA16 infection may be partly linked to the function of the blood-brain barrier. Taken together, this is the first report describing miRNA expression profiles in HUVECs with EV71 and CA16 infections using high-throughput sequencing. Our data provide useful insights that may help to elucidate the different host-pathogen interactions following EV71 and CA16 infection and offer novel therapeutic targets for these infections. |
format | Online Article Text |
id | pubmed-5439704 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-54397042017-06-06 Different microRNA profiles reveal the diverse outcomes induced by EV71 and CA16 infection in human umbilical vein endothelial cells using high-throughput sequencing Song, Jie Hu, Yajie Li, Jiaqi Zheng, Huiwen Wang, Jingjing Guo, Lei Ning, Ruotong Li, Hongzhe Yang, Zening Fan, Haitao Liu, Longding PLoS One Research Article Enterovirus 71 (EV71) and Coxsackievirus A16 (CA16) remain the predominant pathogens in hand, foot, and mouth disease (HFMD), but the factors underlying the pathogenesis of EV71 and CA16 infections have not been elucidated. Recently, the functions of microRNAs (miRNAs) in pathogen-host interactions have been highlighted. In the present study, we performed comprehensive miRNA profiling in EV71- and CA16-infected human umbilical vein endothelial cells (HUVECs) at multiple time points using high-throughput sequencing. The results showed that 135 known miRNAs exhibited remarkable differences in expression. Of these, 30 differentially expressed miRNAs presented opposite trends in EV71- and CA16-infected samples. Subsequently, we mainly focused on the 30 key differentially expressed miRNAs through further screening to predict targets. Gene ontology (GO) and pathway analysis of the predicted targets showed the enrichment of 14 biological processes, 9 molecular functions, 8 cellular components, and 85 pathways. The regulatory networks of these miRNAs with predicted targets, GOs, pathways, and co-expression genes were determined, suggesting that miRNAs display intricate regulatory mechanisms during the infection phase. Consequently, we specifically analyzed the hierarchical GO categories of the predicted targets involved in biological adhesion. The results indicated that the distinct changes induced by EV71 and CA16 infection may be partly linked to the function of the blood-brain barrier. Taken together, this is the first report describing miRNA expression profiles in HUVECs with EV71 and CA16 infections using high-throughput sequencing. Our data provide useful insights that may help to elucidate the different host-pathogen interactions following EV71 and CA16 infection and offer novel therapeutic targets for these infections. Public Library of Science 2017-05-22 /pmc/articles/PMC5439704/ /pubmed/28531227 http://dx.doi.org/10.1371/journal.pone.0177657 Text en © 2017 Song et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Song, Jie Hu, Yajie Li, Jiaqi Zheng, Huiwen Wang, Jingjing Guo, Lei Ning, Ruotong Li, Hongzhe Yang, Zening Fan, Haitao Liu, Longding Different microRNA profiles reveal the diverse outcomes induced by EV71 and CA16 infection in human umbilical vein endothelial cells using high-throughput sequencing |
title | Different microRNA profiles reveal the diverse outcomes induced by EV71 and CA16 infection in human umbilical vein endothelial cells using high-throughput sequencing |
title_full | Different microRNA profiles reveal the diverse outcomes induced by EV71 and CA16 infection in human umbilical vein endothelial cells using high-throughput sequencing |
title_fullStr | Different microRNA profiles reveal the diverse outcomes induced by EV71 and CA16 infection in human umbilical vein endothelial cells using high-throughput sequencing |
title_full_unstemmed | Different microRNA profiles reveal the diverse outcomes induced by EV71 and CA16 infection in human umbilical vein endothelial cells using high-throughput sequencing |
title_short | Different microRNA profiles reveal the diverse outcomes induced by EV71 and CA16 infection in human umbilical vein endothelial cells using high-throughput sequencing |
title_sort | different microrna profiles reveal the diverse outcomes induced by ev71 and ca16 infection in human umbilical vein endothelial cells using high-throughput sequencing |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5439704/ https://www.ncbi.nlm.nih.gov/pubmed/28531227 http://dx.doi.org/10.1371/journal.pone.0177657 |
work_keys_str_mv | AT songjie differentmicrornaprofilesrevealthediverseoutcomesinducedbyev71andca16infectioninhumanumbilicalveinendothelialcellsusinghighthroughputsequencing AT huyajie differentmicrornaprofilesrevealthediverseoutcomesinducedbyev71andca16infectioninhumanumbilicalveinendothelialcellsusinghighthroughputsequencing AT lijiaqi differentmicrornaprofilesrevealthediverseoutcomesinducedbyev71andca16infectioninhumanumbilicalveinendothelialcellsusinghighthroughputsequencing AT zhenghuiwen differentmicrornaprofilesrevealthediverseoutcomesinducedbyev71andca16infectioninhumanumbilicalveinendothelialcellsusinghighthroughputsequencing AT wangjingjing differentmicrornaprofilesrevealthediverseoutcomesinducedbyev71andca16infectioninhumanumbilicalveinendothelialcellsusinghighthroughputsequencing AT guolei differentmicrornaprofilesrevealthediverseoutcomesinducedbyev71andca16infectioninhumanumbilicalveinendothelialcellsusinghighthroughputsequencing AT ningruotong differentmicrornaprofilesrevealthediverseoutcomesinducedbyev71andca16infectioninhumanumbilicalveinendothelialcellsusinghighthroughputsequencing AT lihongzhe differentmicrornaprofilesrevealthediverseoutcomesinducedbyev71andca16infectioninhumanumbilicalveinendothelialcellsusinghighthroughputsequencing AT yangzening differentmicrornaprofilesrevealthediverseoutcomesinducedbyev71andca16infectioninhumanumbilicalveinendothelialcellsusinghighthroughputsequencing AT fanhaitao differentmicrornaprofilesrevealthediverseoutcomesinducedbyev71andca16infectioninhumanumbilicalveinendothelialcellsusinghighthroughputsequencing AT liulongding differentmicrornaprofilesrevealthediverseoutcomesinducedbyev71andca16infectioninhumanumbilicalveinendothelialcellsusinghighthroughputsequencing |