Cargando…

Id1 Promotes Obesity by Suppressing Brown Adipose Thermogenesis and White Adipose Browning

Obesity results from increased energy intake or defects in energy expenditure. Brown adipose tissue (BAT) is specialized for energy expenditure, a process called adaptive thermogenesis. Peroxisome proliferator–activated receptor γ coactivator 1α (PGC1α) controls BAT-mediated thermogenesis by regulat...

Descripción completa

Detalles Bibliográficos
Autores principales: Patil, Mallikarjun, Sharma, Bal Krishan, Elattar, Sawsan, Chang, Judith, Kapil, Shweta, Yuan, Jinling, Satyanarayana, Ande
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Diabetes Association 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5440025/
https://www.ncbi.nlm.nih.gov/pubmed/28270523
http://dx.doi.org/10.2337/db16-1079
_version_ 1783238000309698560
author Patil, Mallikarjun
Sharma, Bal Krishan
Elattar, Sawsan
Chang, Judith
Kapil, Shweta
Yuan, Jinling
Satyanarayana, Ande
author_facet Patil, Mallikarjun
Sharma, Bal Krishan
Elattar, Sawsan
Chang, Judith
Kapil, Shweta
Yuan, Jinling
Satyanarayana, Ande
author_sort Patil, Mallikarjun
collection PubMed
description Obesity results from increased energy intake or defects in energy expenditure. Brown adipose tissue (BAT) is specialized for energy expenditure, a process called adaptive thermogenesis. Peroxisome proliferator–activated receptor γ coactivator 1α (PGC1α) controls BAT-mediated thermogenesis by regulating the expression of Ucp1. Inhibitor of differentiation 1 (Id1) is a helix-loop-helix transcription factor that plays an important role in cell proliferation and differentiation. We demonstrate a novel function of Id1 in BAT thermogenesis and programming of beige adipocytes in white adipose tissue (WAT). We found that adipose tissue–specific overexpression of Id1 causes age-associated and high-fat diet–induced obesity in mice. Id1 suppresses BAT thermogenesis by binding to and suppressing PGC1α transcriptional activity. In WAT, Id1 is mainly localized in the stromal vascular fraction, where the adipose progenitor/precursors reside. Lack of Id1 increases beige gene and Ucp1 expression in the WAT in response to cold exposure. Furthermore, brown-like differentiation is increased in Id1-deficient mouse embryonic fibroblasts. At the molecular level, Id1 directly interacts with and suppresses Ebf2 transcriptional activity, leading to reduced expression of Prdm16, which determines beige/brown adipocyte cell fate. Overall, the study highlights the existence of novel regulatory mechanisms between Id1/PGC1α and Id1/Ebf2 in controlling brown fat metabolism, which has significant implications in the treatment of obesity and its associated diseases, such as diabetes.
format Online
Article
Text
id pubmed-5440025
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher American Diabetes Association
record_format MEDLINE/PubMed
spelling pubmed-54400252018-06-01 Id1 Promotes Obesity by Suppressing Brown Adipose Thermogenesis and White Adipose Browning Patil, Mallikarjun Sharma, Bal Krishan Elattar, Sawsan Chang, Judith Kapil, Shweta Yuan, Jinling Satyanarayana, Ande Diabetes Obesity Studies Obesity results from increased energy intake or defects in energy expenditure. Brown adipose tissue (BAT) is specialized for energy expenditure, a process called adaptive thermogenesis. Peroxisome proliferator–activated receptor γ coactivator 1α (PGC1α) controls BAT-mediated thermogenesis by regulating the expression of Ucp1. Inhibitor of differentiation 1 (Id1) is a helix-loop-helix transcription factor that plays an important role in cell proliferation and differentiation. We demonstrate a novel function of Id1 in BAT thermogenesis and programming of beige adipocytes in white adipose tissue (WAT). We found that adipose tissue–specific overexpression of Id1 causes age-associated and high-fat diet–induced obesity in mice. Id1 suppresses BAT thermogenesis by binding to and suppressing PGC1α transcriptional activity. In WAT, Id1 is mainly localized in the stromal vascular fraction, where the adipose progenitor/precursors reside. Lack of Id1 increases beige gene and Ucp1 expression in the WAT in response to cold exposure. Furthermore, brown-like differentiation is increased in Id1-deficient mouse embryonic fibroblasts. At the molecular level, Id1 directly interacts with and suppresses Ebf2 transcriptional activity, leading to reduced expression of Prdm16, which determines beige/brown adipocyte cell fate. Overall, the study highlights the existence of novel regulatory mechanisms between Id1/PGC1α and Id1/Ebf2 in controlling brown fat metabolism, which has significant implications in the treatment of obesity and its associated diseases, such as diabetes. American Diabetes Association 2017-06 2017-03-07 /pmc/articles/PMC5440025/ /pubmed/28270523 http://dx.doi.org/10.2337/db16-1079 Text en © 2017 by the American Diabetes Association. http://www.diabetesjournals.org/content/licenseReaders may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at http://www.diabetesjournals.org/content/license.
spellingShingle Obesity Studies
Patil, Mallikarjun
Sharma, Bal Krishan
Elattar, Sawsan
Chang, Judith
Kapil, Shweta
Yuan, Jinling
Satyanarayana, Ande
Id1 Promotes Obesity by Suppressing Brown Adipose Thermogenesis and White Adipose Browning
title Id1 Promotes Obesity by Suppressing Brown Adipose Thermogenesis and White Adipose Browning
title_full Id1 Promotes Obesity by Suppressing Brown Adipose Thermogenesis and White Adipose Browning
title_fullStr Id1 Promotes Obesity by Suppressing Brown Adipose Thermogenesis and White Adipose Browning
title_full_unstemmed Id1 Promotes Obesity by Suppressing Brown Adipose Thermogenesis and White Adipose Browning
title_short Id1 Promotes Obesity by Suppressing Brown Adipose Thermogenesis and White Adipose Browning
title_sort id1 promotes obesity by suppressing brown adipose thermogenesis and white adipose browning
topic Obesity Studies
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5440025/
https://www.ncbi.nlm.nih.gov/pubmed/28270523
http://dx.doi.org/10.2337/db16-1079
work_keys_str_mv AT patilmallikarjun id1promotesobesitybysuppressingbrownadiposethermogenesisandwhiteadiposebrowning
AT sharmabalkrishan id1promotesobesitybysuppressingbrownadiposethermogenesisandwhiteadiposebrowning
AT elattarsawsan id1promotesobesitybysuppressingbrownadiposethermogenesisandwhiteadiposebrowning
AT changjudith id1promotesobesitybysuppressingbrownadiposethermogenesisandwhiteadiposebrowning
AT kapilshweta id1promotesobesitybysuppressingbrownadiposethermogenesisandwhiteadiposebrowning
AT yuanjinling id1promotesobesitybysuppressingbrownadiposethermogenesisandwhiteadiposebrowning
AT satyanarayanaande id1promotesobesitybysuppressingbrownadiposethermogenesisandwhiteadiposebrowning