Cargando…
Non-coding cancer driver candidates identified with a sample- and position-specific model of the somatic mutation rate
Non-coding mutations may drive cancer development. Statistical detection of non-coding driver regions is challenged by a varying mutation rate and uncertainty of functional impact. Here, we develop a statistically founded non-coding driver-detection method, ncdDetect, which includes sample-specific...
Autores principales: | Juul, Malene, Bertl, Johanna, Guo, Qianyun, Nielsen, Morten Muhlig, Świtnicki, Michał, Hornshøj, Henrik, Madsen, Tobias, Hobolth, Asger, Pedersen, Jakob Skou |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5440169/ https://www.ncbi.nlm.nih.gov/pubmed/28362259 http://dx.doi.org/10.7554/eLife.21778 |
Ejemplares similares
-
A site specific model and analysis of the neutral somatic mutation rate in whole-genome cancer data
por: Bertl, Johanna, et al.
Publicado: (2018) -
Pan-cancer screen for mutations in non-coding elements with conservation and cancer specificity reveals correlations with expression and survival
por: Hornshøj, Henrik, et al.
Publicado: (2018) -
ncdDetect2: improved models of the site-specific mutation rate in cancer and driver detection with robust significance evaluation
por: Juul, Malene, et al.
Publicado: (2019) -
Regmex: a statistical tool for exploring motifs in ranked sequence lists from genomics experiments
por: Nielsen, Morten Muhlig, et al.
Publicado: (2018) -
The landscape and driver potential of site-specific hotspots across cancer genomes
por: Juul, Randi Istrup, et al.
Publicado: (2021)