Cargando…

Primary somatosensory cortex necessary for the perception of weight from other people's action: A continuous theta-burst TMS experiment

The presence of a network of areas in the parietal and premotor cortices, which are active both during action execution and observation, suggests that we might understand the actions of other people by activating those motor programs for making similar actions. Although neurophysiological and imagin...

Descripción completa

Detalles Bibliográficos
Autores principales: Valchev, Nikola, Tidoni, Emmanuele, Hamilton, Antonia F. de C., Gazzola, Valeria, Avenanti, Alessio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Academic Press 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5440175/
https://www.ncbi.nlm.nih.gov/pubmed/28254507
http://dx.doi.org/10.1016/j.neuroimage.2017.02.075
Descripción
Sumario:The presence of a network of areas in the parietal and premotor cortices, which are active both during action execution and observation, suggests that we might understand the actions of other people by activating those motor programs for making similar actions. Although neurophysiological and imaging studies show an involvement of the somatosensory cortex (SI) during action observation and execution, it is unclear whether SI is essential for understanding the somatosensory aspects of observed actions. To address this issue, we used off-line transcranial magnetic continuous theta-burst stimulation (cTBS) just before a weight judgment task. Participants observed the right hand of an actor lifting a box and estimated its relative weight. In counterbalanced sessions, we delivered sham and active cTBS over the hand region of the left SI and, to test anatomical specificity, over the left motor cortex (M1) and the left superior parietal lobule (SPL). Active cTBS over SI, but not over M1 or SPL, impaired task performance relative to sham cTBS. Moreover, active cTBS delivered over SI just before participants were asked to evaluate the weight of a bouncing ball did not alter performance compared to sham cTBS. These findings indicate that SI is critical for extracting somatosensory features (heavy/light) from observed action kinematics and suggest a prominent role of SI in action understanding.