Cargando…

Recent changes in daily climate extremes in an arid mountain region, a case study in northwestern China’s Qilian Mountains

Changes in climate extremes pose far-reaching consequences to ecological processes and hydrologic cycles in alpine ecosystems of the arid mountain regions. Therefore, regional assessments in various climates and mountain regions are needed for understanding the uncertainties of the change trends for...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Pengfei, He, Zhibin, Du, Jun, Chen, Longfei, Zhu, Xi, Li, Jing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5440392/
https://www.ncbi.nlm.nih.gov/pubmed/28533540
http://dx.doi.org/10.1038/s41598-017-02345-4
Descripción
Sumario:Changes in climate extremes pose far-reaching consequences to ecological processes and hydrologic cycles in alpine ecosystems of the arid mountain regions. Therefore, regional assessments in various climates and mountain regions are needed for understanding the uncertainties of the change trends for extreme climate events. The objective of this study was to assess the spatial distribution and temporal trends of extreme precipitation and temperature events responses to global warming on the arid mountain regions of China. Results found that temperature extremes exhibited a significant warming trend, consistent with global warming. Warming trend in autumn and winter were greater than in spring and summer. Besides, precipitation extremes also exhibited statistically increase trend, such as number of days with heavy precipitation and rain day precipitation, etc. The distribution of the number of rainy days was showed a significant increasing trend in many sites, indicating that the increase of rain day precipitation mainly contributed by the increase of single precipitation event duration and moderate-rain days. The greater increasing trend of extreme climate events mainly existed in higher altitudes. This results lend an evidence to earlier predictions that the climate in northwestern China is changing from cold-dry to warm-wet.