Cargando…
On the least signless Laplacian eigenvalue of a non-bipartite connected graph with fixed maximum degree
In this paper, we determine the unique graph whose least signless Laplacian eigenvalue attains the minimum among all non-bipartite unicyclic graphs of order n with maximum degree Δ and among all non-bipartite connected graphs of order n with maximum degree Δ, respectively.
Autores principales: | Guo, Shu-Guang, Zhang, Rong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5440539/ https://www.ncbi.nlm.nih.gov/pubmed/28603399 http://dx.doi.org/10.1186/s13660-017-1395-y |
Ejemplares similares
-
Remoteness and distance, distance (signless) Laplacian eigenvalues of a graph
por: Jia, Huicai, et al.
Publicado: (2018) -
On the Signless Laplacian Spectral Radius of Bicyclic Graphs with Perfect Matchings
por: Zhang, Jing-Ming, et al.
Publicado: (2014) -
On the spectral radius and energy of signless Laplacian matrix of digraphs
por: Ganie, Hilal A., et al.
Publicado: (2022) -
Spectral generalizations of line graphs: on graphs with least eigenvalue -2
por: Cvetkovic, Dragoš, et al.
Publicado: (2004) -
Eigenvalues of Laplacians and other geometric operators
por: Grigoryan, Alexander, et al.
Publicado: (2004)