Cargando…

Toxicity and Binding Studies of Bacillus thuringiensis Cry1Ac, Cry1F, Cry1C, and Cry2A Proteins in the Soybean Pests Anticarsia gemmatalis and Chrysodeixis (Pseudoplusia) includens

Anticarsia gemmatalis (velvetbean caterpillar) and Chrysodeixis includens (soybean looper, formerly named Pseudoplusia includens) are two important defoliating insects of soybeans. Both lepidopteran pests are controlled mainly with synthetic insecticides. Alternative control strategies, such as biop...

Descripción completa

Detalles Bibliográficos
Autores principales: Bel, Yolanda, Sheets, Joel J., Tan, Sek Yee, Narva, Kenneth E., Escriche, Baltasar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5440703/
https://www.ncbi.nlm.nih.gov/pubmed/28363958
http://dx.doi.org/10.1128/AEM.00326-17
_version_ 1783238111940050944
author Bel, Yolanda
Sheets, Joel J.
Tan, Sek Yee
Narva, Kenneth E.
Escriche, Baltasar
author_facet Bel, Yolanda
Sheets, Joel J.
Tan, Sek Yee
Narva, Kenneth E.
Escriche, Baltasar
author_sort Bel, Yolanda
collection PubMed
description Anticarsia gemmatalis (velvetbean caterpillar) and Chrysodeixis includens (soybean looper, formerly named Pseudoplusia includens) are two important defoliating insects of soybeans. Both lepidopteran pests are controlled mainly with synthetic insecticides. Alternative control strategies, such as biopesticides based on the Bacillus thuringiensis (Bt) toxins or transgenic plants expressing Bt toxins, can be used and are increasingly being adopted. Studies on the insect susceptibilities and modes of action of the different Bt toxins are crucial to determine management strategies to control the pests and to delay outbreaks of insect resistance. In the present study, the susceptibilities of both soybean pests to the Bt toxins Cry1Ac, Cry1Fa, Cry1Ca, and Cry2Aa have been investigated. Bioassays performed in first-instar larvae showed that both insects are susceptible to all these toxins. Competition-binding studies carried out with Cry1Ac and Cry1Fa (125)-iodine labeled proteins demonstrated the presence of specific binding sites for both of them on the midgut brush border membrane vesicles (BBMVs) of both A. gemmatalis and C. includens. Competition-binding experiments and specific-binding inhibition studies performed with selected sugars and lectins indicated that Cry1Ac and Cry1Fa share some, but not all, binding sites in the midguts of both insects. Also, the Cry1Ac- or Cry1Fa-binding sites were not shared with Cry1Ca or Cry2Aa in either soybean pest. This study contributes to the knowledge of Bt toxicity and midgut toxin binding sites in A. gemmatalis and C. includens and sheds light on the cross-resistance potential of Cry1Ac, Cry1Fa, Cry1Ca, and Cry2Aa Bt proteins as candidate proteins for Bt-pyramided crops. IMPORTANCE In the present study, the toxicity and the mode of action of the Bacillus thuringiensis (Bt) toxins Cry1Ac, Cry1Fa, Cry1Ca, and Cry2Aa in Anticarsia gemmatalis and Chrysodeixis includens (important defoliating pests of soybeans) have been investigated. These studies are crucial for determining management strategies for pest control. Bioassays showed that both insects were susceptible to the toxins. Competition-binding studies demonstrated the presence of Cry1Fa- and Cry1Ac-specific binding sites in the midguts of both pests. These results, together with the results from binding inhibition studies performed with sugars and lectins, indicated that Cry1Ac and Cry1Fa share some, but not all, binding sites, and that they were not shared with Cry1Ca or Cry2Aa in either soybean pest. This study contributes to the knowledge of Bt toxicity in A. gemmatalis and C. includens and sheds light on the cross-resistance potential of Cry1Ac, Cry1Fa, Cry1Ca, and Cry2Aa Bt proteins as candidate proteins for Bt-pyramided crops.
format Online
Article
Text
id pubmed-5440703
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-54407032017-06-07 Toxicity and Binding Studies of Bacillus thuringiensis Cry1Ac, Cry1F, Cry1C, and Cry2A Proteins in the Soybean Pests Anticarsia gemmatalis and Chrysodeixis (Pseudoplusia) includens Bel, Yolanda Sheets, Joel J. Tan, Sek Yee Narva, Kenneth E. Escriche, Baltasar Appl Environ Microbiol Biotechnology Anticarsia gemmatalis (velvetbean caterpillar) and Chrysodeixis includens (soybean looper, formerly named Pseudoplusia includens) are two important defoliating insects of soybeans. Both lepidopteran pests are controlled mainly with synthetic insecticides. Alternative control strategies, such as biopesticides based on the Bacillus thuringiensis (Bt) toxins or transgenic plants expressing Bt toxins, can be used and are increasingly being adopted. Studies on the insect susceptibilities and modes of action of the different Bt toxins are crucial to determine management strategies to control the pests and to delay outbreaks of insect resistance. In the present study, the susceptibilities of both soybean pests to the Bt toxins Cry1Ac, Cry1Fa, Cry1Ca, and Cry2Aa have been investigated. Bioassays performed in first-instar larvae showed that both insects are susceptible to all these toxins. Competition-binding studies carried out with Cry1Ac and Cry1Fa (125)-iodine labeled proteins demonstrated the presence of specific binding sites for both of them on the midgut brush border membrane vesicles (BBMVs) of both A. gemmatalis and C. includens. Competition-binding experiments and specific-binding inhibition studies performed with selected sugars and lectins indicated that Cry1Ac and Cry1Fa share some, but not all, binding sites in the midguts of both insects. Also, the Cry1Ac- or Cry1Fa-binding sites were not shared with Cry1Ca or Cry2Aa in either soybean pest. This study contributes to the knowledge of Bt toxicity and midgut toxin binding sites in A. gemmatalis and C. includens and sheds light on the cross-resistance potential of Cry1Ac, Cry1Fa, Cry1Ca, and Cry2Aa Bt proteins as candidate proteins for Bt-pyramided crops. IMPORTANCE In the present study, the toxicity and the mode of action of the Bacillus thuringiensis (Bt) toxins Cry1Ac, Cry1Fa, Cry1Ca, and Cry2Aa in Anticarsia gemmatalis and Chrysodeixis includens (important defoliating pests of soybeans) have been investigated. These studies are crucial for determining management strategies for pest control. Bioassays showed that both insects were susceptible to the toxins. Competition-binding studies demonstrated the presence of Cry1Fa- and Cry1Ac-specific binding sites in the midguts of both pests. These results, together with the results from binding inhibition studies performed with sugars and lectins, indicated that Cry1Ac and Cry1Fa share some, but not all, binding sites, and that they were not shared with Cry1Ca or Cry2Aa in either soybean pest. This study contributes to the knowledge of Bt toxicity in A. gemmatalis and C. includens and sheds light on the cross-resistance potential of Cry1Ac, Cry1Fa, Cry1Ca, and Cry2Aa Bt proteins as candidate proteins for Bt-pyramided crops. American Society for Microbiology 2017-05-17 /pmc/articles/PMC5440703/ /pubmed/28363958 http://dx.doi.org/10.1128/AEM.00326-17 Text en Copyright © 2017 Bel et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/) .
spellingShingle Biotechnology
Bel, Yolanda
Sheets, Joel J.
Tan, Sek Yee
Narva, Kenneth E.
Escriche, Baltasar
Toxicity and Binding Studies of Bacillus thuringiensis Cry1Ac, Cry1F, Cry1C, and Cry2A Proteins in the Soybean Pests Anticarsia gemmatalis and Chrysodeixis (Pseudoplusia) includens
title Toxicity and Binding Studies of Bacillus thuringiensis Cry1Ac, Cry1F, Cry1C, and Cry2A Proteins in the Soybean Pests Anticarsia gemmatalis and Chrysodeixis (Pseudoplusia) includens
title_full Toxicity and Binding Studies of Bacillus thuringiensis Cry1Ac, Cry1F, Cry1C, and Cry2A Proteins in the Soybean Pests Anticarsia gemmatalis and Chrysodeixis (Pseudoplusia) includens
title_fullStr Toxicity and Binding Studies of Bacillus thuringiensis Cry1Ac, Cry1F, Cry1C, and Cry2A Proteins in the Soybean Pests Anticarsia gemmatalis and Chrysodeixis (Pseudoplusia) includens
title_full_unstemmed Toxicity and Binding Studies of Bacillus thuringiensis Cry1Ac, Cry1F, Cry1C, and Cry2A Proteins in the Soybean Pests Anticarsia gemmatalis and Chrysodeixis (Pseudoplusia) includens
title_short Toxicity and Binding Studies of Bacillus thuringiensis Cry1Ac, Cry1F, Cry1C, and Cry2A Proteins in the Soybean Pests Anticarsia gemmatalis and Chrysodeixis (Pseudoplusia) includens
title_sort toxicity and binding studies of bacillus thuringiensis cry1ac, cry1f, cry1c, and cry2a proteins in the soybean pests anticarsia gemmatalis and chrysodeixis (pseudoplusia) includens
topic Biotechnology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5440703/
https://www.ncbi.nlm.nih.gov/pubmed/28363958
http://dx.doi.org/10.1128/AEM.00326-17
work_keys_str_mv AT belyolanda toxicityandbindingstudiesofbacillusthuringiensiscry1accry1fcry1candcry2aproteinsinthesoybeanpestsanticarsiagemmatalisandchrysodeixispseudoplusiaincludens
AT sheetsjoelj toxicityandbindingstudiesofbacillusthuringiensiscry1accry1fcry1candcry2aproteinsinthesoybeanpestsanticarsiagemmatalisandchrysodeixispseudoplusiaincludens
AT tansekyee toxicityandbindingstudiesofbacillusthuringiensiscry1accry1fcry1candcry2aproteinsinthesoybeanpestsanticarsiagemmatalisandchrysodeixispseudoplusiaincludens
AT narvakennethe toxicityandbindingstudiesofbacillusthuringiensiscry1accry1fcry1candcry2aproteinsinthesoybeanpestsanticarsiagemmatalisandchrysodeixispseudoplusiaincludens
AT escrichebaltasar toxicityandbindingstudiesofbacillusthuringiensiscry1accry1fcry1candcry2aproteinsinthesoybeanpestsanticarsiagemmatalisandchrysodeixispseudoplusiaincludens