Cargando…

A bioprosthetic ovary created using 3D printed microporous scaffolds restores ovarian function in sterilized mice

Emerging additive manufacturing techniques enable investigation of the effects of pore geometry on cell behavior and function. Here, we 3D print microporous hydrogel scaffolds to test how varying pore geometry, accomplished by manipulating the advancing angle between printed layers, affects the surv...

Descripción completa

Detalles Bibliográficos
Autores principales: Laronda, Monica M., Rutz, Alexandra L., Xiao, Shuo, Whelan, Kelly A., Duncan, Francesca E., Roth, Eric W., Woodruff, Teresa K., Shah, Ramille N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5440811/
https://www.ncbi.nlm.nih.gov/pubmed/28509899
http://dx.doi.org/10.1038/ncomms15261
_version_ 1783238133578465280
author Laronda, Monica M.
Rutz, Alexandra L.
Xiao, Shuo
Whelan, Kelly A.
Duncan, Francesca E.
Roth, Eric W.
Woodruff, Teresa K.
Shah, Ramille N.
author_facet Laronda, Monica M.
Rutz, Alexandra L.
Xiao, Shuo
Whelan, Kelly A.
Duncan, Francesca E.
Roth, Eric W.
Woodruff, Teresa K.
Shah, Ramille N.
author_sort Laronda, Monica M.
collection PubMed
description Emerging additive manufacturing techniques enable investigation of the effects of pore geometry on cell behavior and function. Here, we 3D print microporous hydrogel scaffolds to test how varying pore geometry, accomplished by manipulating the advancing angle between printed layers, affects the survival of ovarian follicles. 30° and 60° scaffolds provide corners that surround follicles on multiple sides while 90° scaffolds have an open porosity that limits follicle–scaffold interaction. As the amount of scaffold interaction increases, follicle spreading is limited and survival increases. Follicle-seeded scaffolds become highly vascularized and ovarian function is fully restored when implanted in surgically sterilized mice. Moreover, pups are born through natural mating and thrive through maternal lactation. These findings present an in vivo functional ovarian implant designed with 3D printing, and indicate that scaffold pore architecture is a critical variable in additively manufactured scaffold design for functional tissue engineering.
format Online
Article
Text
id pubmed-5440811
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-54408112017-06-02 A bioprosthetic ovary created using 3D printed microporous scaffolds restores ovarian function in sterilized mice Laronda, Monica M. Rutz, Alexandra L. Xiao, Shuo Whelan, Kelly A. Duncan, Francesca E. Roth, Eric W. Woodruff, Teresa K. Shah, Ramille N. Nat Commun Article Emerging additive manufacturing techniques enable investigation of the effects of pore geometry on cell behavior and function. Here, we 3D print microporous hydrogel scaffolds to test how varying pore geometry, accomplished by manipulating the advancing angle between printed layers, affects the survival of ovarian follicles. 30° and 60° scaffolds provide corners that surround follicles on multiple sides while 90° scaffolds have an open porosity that limits follicle–scaffold interaction. As the amount of scaffold interaction increases, follicle spreading is limited and survival increases. Follicle-seeded scaffolds become highly vascularized and ovarian function is fully restored when implanted in surgically sterilized mice. Moreover, pups are born through natural mating and thrive through maternal lactation. These findings present an in vivo functional ovarian implant designed with 3D printing, and indicate that scaffold pore architecture is a critical variable in additively manufactured scaffold design for functional tissue engineering. Nature Publishing Group 2017-05-16 /pmc/articles/PMC5440811/ /pubmed/28509899 http://dx.doi.org/10.1038/ncomms15261 Text en Copyright © 2017, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Laronda, Monica M.
Rutz, Alexandra L.
Xiao, Shuo
Whelan, Kelly A.
Duncan, Francesca E.
Roth, Eric W.
Woodruff, Teresa K.
Shah, Ramille N.
A bioprosthetic ovary created using 3D printed microporous scaffolds restores ovarian function in sterilized mice
title A bioprosthetic ovary created using 3D printed microporous scaffolds restores ovarian function in sterilized mice
title_full A bioprosthetic ovary created using 3D printed microporous scaffolds restores ovarian function in sterilized mice
title_fullStr A bioprosthetic ovary created using 3D printed microporous scaffolds restores ovarian function in sterilized mice
title_full_unstemmed A bioprosthetic ovary created using 3D printed microporous scaffolds restores ovarian function in sterilized mice
title_short A bioprosthetic ovary created using 3D printed microporous scaffolds restores ovarian function in sterilized mice
title_sort bioprosthetic ovary created using 3d printed microporous scaffolds restores ovarian function in sterilized mice
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5440811/
https://www.ncbi.nlm.nih.gov/pubmed/28509899
http://dx.doi.org/10.1038/ncomms15261
work_keys_str_mv AT larondamonicam abioprostheticovarycreatedusing3dprintedmicroporousscaffoldsrestoresovarianfunctioninsterilizedmice
AT rutzalexandral abioprostheticovarycreatedusing3dprintedmicroporousscaffoldsrestoresovarianfunctioninsterilizedmice
AT xiaoshuo abioprostheticovarycreatedusing3dprintedmicroporousscaffoldsrestoresovarianfunctioninsterilizedmice
AT whelankellya abioprostheticovarycreatedusing3dprintedmicroporousscaffoldsrestoresovarianfunctioninsterilizedmice
AT duncanfrancescae abioprostheticovarycreatedusing3dprintedmicroporousscaffoldsrestoresovarianfunctioninsterilizedmice
AT rothericw abioprostheticovarycreatedusing3dprintedmicroporousscaffoldsrestoresovarianfunctioninsterilizedmice
AT woodruffteresak abioprostheticovarycreatedusing3dprintedmicroporousscaffoldsrestoresovarianfunctioninsterilizedmice
AT shahramillen abioprostheticovarycreatedusing3dprintedmicroporousscaffoldsrestoresovarianfunctioninsterilizedmice
AT larondamonicam bioprostheticovarycreatedusing3dprintedmicroporousscaffoldsrestoresovarianfunctioninsterilizedmice
AT rutzalexandral bioprostheticovarycreatedusing3dprintedmicroporousscaffoldsrestoresovarianfunctioninsterilizedmice
AT xiaoshuo bioprostheticovarycreatedusing3dprintedmicroporousscaffoldsrestoresovarianfunctioninsterilizedmice
AT whelankellya bioprostheticovarycreatedusing3dprintedmicroporousscaffoldsrestoresovarianfunctioninsterilizedmice
AT duncanfrancescae bioprostheticovarycreatedusing3dprintedmicroporousscaffoldsrestoresovarianfunctioninsterilizedmice
AT rothericw bioprostheticovarycreatedusing3dprintedmicroporousscaffoldsrestoresovarianfunctioninsterilizedmice
AT woodruffteresak bioprostheticovarycreatedusing3dprintedmicroporousscaffoldsrestoresovarianfunctioninsterilizedmice
AT shahramillen bioprostheticovarycreatedusing3dprintedmicroporousscaffoldsrestoresovarianfunctioninsterilizedmice