Cargando…
Novel insights into ascorbate retention and degradation during the washing and post-harvest storage of spinach and other salad leaves
Post-harvest treatments of pre-packaged salad leaves potentially cause l-ascorbate loss, but the mechanisms of ascorbate degradation remain incompletely understood, especially in planta. We explored the extent and pathways of ascorbate loss in variously washed and stored salad leaves. Ascorbate was...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Applied Science Publishers
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5441274/ https://www.ncbi.nlm.nih.gov/pubmed/28530571 http://dx.doi.org/10.1016/j.foodchem.2017.04.082 |
_version_ | 1783238232811503616 |
---|---|
author | Dewhirst, Rebecca A. Clarkson, Graham J.J. Rothwell, Steve D. Fry, Stephen C. |
author_facet | Dewhirst, Rebecca A. Clarkson, Graham J.J. Rothwell, Steve D. Fry, Stephen C. |
author_sort | Dewhirst, Rebecca A. |
collection | PubMed |
description | Post-harvest treatments of pre-packaged salad leaves potentially cause l-ascorbate loss, but the mechanisms of ascorbate degradation remain incompletely understood, especially in planta. We explored the extent and pathways of ascorbate loss in variously washed and stored salad leaves. Ascorbate was assayed by 2,6-dichlorophenolindophenol titration, and pathways were monitored by (14)C-radiolabelling followed by high-voltage electrophoresis. All leaves tested showed ascorbate loss during storage: lettuce showed the greatest percentage loss, wild rocket the least. Spinach leaves were particularly prone to losing ascorbate during washing, especially with simultaneous mechanical agitation; however, washing in the presence of hypochlorite did not significantly increase ascorbate loss. In spinach, [(14)C]oxalate was the major product of [(14)C]ascorbate degradation, suggesting that commercial washing causes oxidative stress. This study highlights that ascorbate/dehydroascorbic acid are lost via the oxidative pathway during washing and post-harvest storage of salad leaves. Thus changes to washing procedures could potentially increase the post-harvest retention of ascorbate. |
format | Online Article Text |
id | pubmed-5441274 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Elsevier Applied Science Publishers |
record_format | MEDLINE/PubMed |
spelling | pubmed-54412742017-10-15 Novel insights into ascorbate retention and degradation during the washing and post-harvest storage of spinach and other salad leaves Dewhirst, Rebecca A. Clarkson, Graham J.J. Rothwell, Steve D. Fry, Stephen C. Food Chem Article Post-harvest treatments of pre-packaged salad leaves potentially cause l-ascorbate loss, but the mechanisms of ascorbate degradation remain incompletely understood, especially in planta. We explored the extent and pathways of ascorbate loss in variously washed and stored salad leaves. Ascorbate was assayed by 2,6-dichlorophenolindophenol titration, and pathways were monitored by (14)C-radiolabelling followed by high-voltage electrophoresis. All leaves tested showed ascorbate loss during storage: lettuce showed the greatest percentage loss, wild rocket the least. Spinach leaves were particularly prone to losing ascorbate during washing, especially with simultaneous mechanical agitation; however, washing in the presence of hypochlorite did not significantly increase ascorbate loss. In spinach, [(14)C]oxalate was the major product of [(14)C]ascorbate degradation, suggesting that commercial washing causes oxidative stress. This study highlights that ascorbate/dehydroascorbic acid are lost via the oxidative pathway during washing and post-harvest storage of salad leaves. Thus changes to washing procedures could potentially increase the post-harvest retention of ascorbate. Elsevier Applied Science Publishers 2017-10-15 /pmc/articles/PMC5441274/ /pubmed/28530571 http://dx.doi.org/10.1016/j.foodchem.2017.04.082 Text en © 2017 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Dewhirst, Rebecca A. Clarkson, Graham J.J. Rothwell, Steve D. Fry, Stephen C. Novel insights into ascorbate retention and degradation during the washing and post-harvest storage of spinach and other salad leaves |
title | Novel insights into ascorbate retention and degradation during the washing and post-harvest storage of spinach and other salad leaves |
title_full | Novel insights into ascorbate retention and degradation during the washing and post-harvest storage of spinach and other salad leaves |
title_fullStr | Novel insights into ascorbate retention and degradation during the washing and post-harvest storage of spinach and other salad leaves |
title_full_unstemmed | Novel insights into ascorbate retention and degradation during the washing and post-harvest storage of spinach and other salad leaves |
title_short | Novel insights into ascorbate retention and degradation during the washing and post-harvest storage of spinach and other salad leaves |
title_sort | novel insights into ascorbate retention and degradation during the washing and post-harvest storage of spinach and other salad leaves |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5441274/ https://www.ncbi.nlm.nih.gov/pubmed/28530571 http://dx.doi.org/10.1016/j.foodchem.2017.04.082 |
work_keys_str_mv | AT dewhirstrebeccaa novelinsightsintoascorbateretentionanddegradationduringthewashingandpostharveststorageofspinachandothersaladleaves AT clarksongrahamjj novelinsightsintoascorbateretentionanddegradationduringthewashingandpostharveststorageofspinachandothersaladleaves AT rothwellsteved novelinsightsintoascorbateretentionanddegradationduringthewashingandpostharveststorageofspinachandothersaladleaves AT frystephenc novelinsightsintoascorbateretentionanddegradationduringthewashingandpostharveststorageofspinachandothersaladleaves |