Cargando…
The need to approximate the use-case in clinical machine learning
The availability of smartphone and wearable sensor technology is leading to a rapid accumulation of human subject data, and machine learning is emerging as a technique to map those data into clinical predictions. As machine learning algorithms are increasingly used to support clinical decision makin...
Autores principales: | Saeb, Sohrab, Lonini, Luca, Jayaraman, Arun, Mohr, David C., Kording, Konrad P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5441397/ https://www.ncbi.nlm.nih.gov/pubmed/28327985 http://dx.doi.org/10.1093/gigascience/gix019 |
Ejemplares similares
-
Using and understanding cross-validation strategies. Perspectives on Saeb et al.
por: Little, Max A, et al.
Publicado: (2017) -
Fall Detection in Individuals With Lower Limb Amputations Using Mobile Phones: Machine Learning Enhances Robustness for Real-World Applications
por: Shawen, Nicholas, et al.
Publicado: (2017) -
Addendum of: Fall Detection in Individuals With Lower Limb Amputations Using Mobile Phones: Machine Learning Enhances Robustness for Real-World Applications
por: Shawen, Nicholas, et al.
Publicado: (2017) -
Making Activity Recognition Robust against Deceptive Behavior
por: Saeb, Sohrab, et al.
Publicado: (2015) -
Fall Classification by Machine Learning Using Mobile Phones
por: Albert, Mark V., et al.
Publicado: (2012)