Cargando…

Porous Ionic Membrane Based Flexible Humidity Sensor and its Multifunctional Applications

A highly flexible porous ionic membrane (PIM) is fabricated from a polyvinyl alcohol/KOH polymer gel electrolyte, showing well‐defined 3D porous structure. The conductance of the PIM changes more than 70 times as the relative humidity (RH) increases from 10.89% to 81.75% with fast and reversible res...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Tie, Li, Lianhui, Sun, Hongwei, Xu, Yan, Wang, Xuewen, Luo, Hui, Liu, Zheng, Zhang, Ting
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5441428/
https://www.ncbi.nlm.nih.gov/pubmed/28546909
http://dx.doi.org/10.1002/advs.201600404
Descripción
Sumario:A highly flexible porous ionic membrane (PIM) is fabricated from a polyvinyl alcohol/KOH polymer gel electrolyte, showing well‐defined 3D porous structure. The conductance of the PIM changes more than 70 times as the relative humidity (RH) increases from 10.89% to 81.75% with fast and reversible response at room temperature. In addition, the PIM‐based sensor is insensitive to temperature (0–95 °C) and pressure (0–6.8 kPa) change, which indicates that it can be used as highly selective flexible humidity sensor. A noncontact switch system containing PIM‐based sensor is assembled, and results show that the switch responds favorably to RH change caused by an approaching finger. Moreover, an attachable smart label using PIM‐based sensor is explored to measure the water contents of human skin, which shows a great linear relationship between the sensitivity of the sensor and the facial water contents measured by a commercial reference device.