Cargando…
Liquid Metal Phagocytosis: Intermetallic Wetting Induced Particle Internalization
A biomimetic cellular‐eating phenomenon in gallium‐based liquid metal to realize particle internalization in full‐pH‐range solutions is reported. The effect, which is called liquid metal phagocytosis, represents a wet‐processing strategy to prepare various metallic liquid metal‐particle mixtures thr...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5441499/ https://www.ncbi.nlm.nih.gov/pubmed/28546916 http://dx.doi.org/10.1002/advs.201700024 |
Sumario: | A biomimetic cellular‐eating phenomenon in gallium‐based liquid metal to realize particle internalization in full‐pH‐range solutions is reported. The effect, which is called liquid metal phagocytosis, represents a wet‐processing strategy to prepare various metallic liquid metal‐particle mixtures through introducing excitations such as an electrical polarization, a dissolving medium, or a sacrificial metal. A nonwetting‐to‐wetting transition resulting from surface transition and the reactive nature of the intermetallic wetting between the two metallic phases are found to be primarily responsible for such particle‐eating behavior. Theoretical study brings forward a physical picture to the problem, together with a generalized interpretation. The model developed here, which uses the macroscopic contact angle between the two metallic phases as a criterion to predict the particle internalization behavior, shows good consistency with experimental results. |
---|