Cargando…
Learning stable and predictive network-based patterns of schizophrenia and its clinical symptoms
Schizophrenia is often associated with disrupted brain connectivity. However, identifying specific neuroimaging-based patterns pathognomonic for schizophrenia and related symptom severity remains a challenging open problem requiring large-scale data-driven analyses emphasizing not only statistical s...
Autores principales: | Gheiratmand, Mina, Rish, Irina, Cecchi, Guillermo A., Brown, Matthew R. G., Greiner, Russell, Polosecki, Pablo I., Bashivan, Pouya, Greenshaw, Andrew J., Ramasubbu, Rajamannar, Dursun, Serdar M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5441570/ https://www.ncbi.nlm.nih.gov/pubmed/28560268 http://dx.doi.org/10.1038/s41537-017-0022-8 |
Ejemplares similares
-
Accuracy of automated classification of major depressive disorder as a function of symptom severity
por: Ramasubbu, Rajamannar, et al.
Publicado: (2016) -
Baseline multimodal information predicts future motor impairment in premanifest Huntington's disease
por: Castro, Eduardo, et al.
Publicado: (2018) -
Resting-state connectivity stratifies premanifest Huntington’s disease by longitudinal cognitive decline rate
por: Polosecki, Pablo, et al.
Publicado: (2020) -
Towards artificial intelligence in mental health by improving schizophrenia prediction with multiple brain parcellation ensemble-learning
por: Kalmady, Sunil Vasu, et al.
Publicado: (2019) -
Methylphenidate modulates activity within cognitive neural networks of patients with post-stroke major depression: A placebo-controlled fMRI study
por: Ramasubbu, Rajamannar, et al.
Publicado: (2008)