Cargando…
Development of machine learning models for diagnosis of glaucoma
The study aimed to develop machine learning models that have strong prediction power and interpretability for diagnosis of glaucoma based on retinal nerve fiber layer (RNFL) thickness and visual field (VF). We collected various candidate features from the examination of retinal nerve fiber layer (RN...
Autores principales: | Kim, Seong Jae, Cho, Kyong Jin, Oh, Sejong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5441603/ https://www.ncbi.nlm.nih.gov/pubmed/28542342 http://dx.doi.org/10.1371/journal.pone.0177726 |
Ejemplares similares
-
Explainable Machine Learning Model for Glaucoma Diagnosis and Its Interpretation
por: Oh, Sejong, et al.
Publicado: (2021) -
Development of the Integrated Glaucoma Risk Index
por: Oh, Sejong, et al.
Publicado: (2022) -
Machine learning-based predictive model for prevention of metabolic syndrome
por: Shin, Hyunseok, et al.
Publicado: (2023) -
Comparison of Machine-Learning Classification Models for Glaucoma Management
por: An, Guangzhou, et al.
Publicado: (2018) -
Glaucoma Diagnosis Through the Integration of Optical Coherence Tomography/Angiography and Machine Learning Diagnostic Models
por: Kooner, Karanjit S, et al.
Publicado: (2022)