Cargando…
An efficient semi-supervised community detection framework in social networks
Community detection is an important tasks across a number of research fields including social science, biology, and physics. In the real world, topology information alone is often inadequate to accurately find out community structure due to its sparsity and noise. The potential useful prior informat...
Autores principales: | Li, Zhen, Gong, Yong, Pan, Zhisong, Hu, Guyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5441628/ https://www.ncbi.nlm.nih.gov/pubmed/28542520 http://dx.doi.org/10.1371/journal.pone.0178046 |
Ejemplares similares
-
Multi-Path Routing Algorithm for Wireless Sensor Network Based on Semi-Supervised Learning
por: Guo, Yiping, et al.
Publicado: (2022) -
Active link selection for efficient semi-supervised community detection
por: Yang, Liang, et al.
Publicado: (2015) -
Semi-Supervised Framework with Autoencoder-Based Neural Networks for Fault Prognosis
por: da Rosa, Tiago Gaspar, et al.
Publicado: (2022) -
Semi-supervised learning framework for oil and gas pipeline failure detection
por: Alobaidi, Mohammad H., et al.
Publicado: (2022) -
A novel self-learning semi-supervised deep learning network to detect fake news on social media
por: Li, Xin, et al.
Publicado: (2021)