Cargando…

The apoplasmic pathway via the root apex and lateral roots contributes to Cd hyperaccumulation in the hyperaccumulator Sedum alfredii

Although the significance of apoplasmic barriers in roots with regards to the uptake of toxic elements is generally known, the contribution of apoplasmic bypasses (ABs) to cadmium (Cd) hyperaccumulation is little understood. Here, we employed a combination of stable isotopic tracer techniques, an AB...

Descripción completa

Detalles Bibliográficos
Autores principales: Tao, Qi, Jupa, Radek, Luo, Jipeng, Lux, Alexander, Kováč, Ján, Wen, Yue, Zhou, Yimei, Jan, Japenga, Liang, Yongchao, Li, Tingqiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5441904/
https://www.ncbi.nlm.nih.gov/pubmed/28204505
http://dx.doi.org/10.1093/jxb/erw453
Descripción
Sumario:Although the significance of apoplasmic barriers in roots with regards to the uptake of toxic elements is generally known, the contribution of apoplasmic bypasses (ABs) to cadmium (Cd) hyperaccumulation is little understood. Here, we employed a combination of stable isotopic tracer techniques, an ABs tracer, hydraulic measurements, suberin lamellae staining, metabolic inhibitors, and antitranspirants to investigate and quantify the impact of the ABs on translocation of Cd to the xylem in roots of a hyperaccumulating (H) ecotype and a non-hyperaccumulating (NH) ecotype of Sedum alfredii. In the H ecotype, the Cd content in the xylem sap was proportional to hydrostatic pressure, which was attributed to pressure-driven flow via the ABs. The contribution of the ABs to Cd transportation to the xylem was dependent on the Cd concentration applied to the H ecotype (up to 37% at the highest concentration used). Cd-treated H ecotype roots showed significantly higher hydraulic conductance compared with the NH ecotype (76 vs 52 × 10(–8) m s(–1)MPa(–1)), which is in accordance with less extensive suberization due to reduced expression of suberin-related genes. The main entry sites of apoplasmically transported Cd were localized in the root apexes and lateral roots of the H ecotype, where suberin lamellae were not well developed. These findings highlight the significance of the apoplasmic bypass in Cd hyperaccumulation in hyperaccumulating ecotypes of S. alfredii.