Cargando…
A knowledge-based scoring function based on residue triplets for protein structure prediction
One of the general paradigms for ab initio protein structure prediction involves sampling the conformational space such that a large set of decoy (candidate) structures are generated and then selecting native-like conformations from those decoys using various scoring functions. In this study, based...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5441915/ https://www.ncbi.nlm.nih.gov/pubmed/16533801 http://dx.doi.org/10.1093/protein/gzj018 |
Sumario: | One of the general paradigms for ab initio protein structure prediction involves sampling the conformational space such that a large set of decoy (candidate) structures are generated and then selecting native-like conformations from those decoys using various scoring functions. In this study, based on a physical/geometric approach first suggested by Banavar and colleagues, we formulate a knowledge-based scoring function, which uses the radii of curvature formed among triplets of residues in a protein conformation. By analyzing its performance on various decoy sets, we determine a good set of parameters—the distance cutoff and the number of distance bins—to use for configuring such a function. Furthermore, we investigate the effect of using various approaches for compiling the prior distribution on the performance of the knowledge-based function. Possible extensions to the current form of the residue triplet scoring function are discussed. |
---|