Cargando…
Segmental morphometrics of the olive baboon (Papio anubis): a longitudinal study from birth to adulthood
The linear dimensions and inertial characteristics of the body are important in locomotion and they change considerably during the ontogeny of animals, including humans. This longitudinal and ontogenetic study has produced the largest dataset to date of segmental morphometrics in a Catarrhini specie...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5442150/ https://www.ncbi.nlm.nih.gov/pubmed/28294323 http://dx.doi.org/10.1111/joa.12602 |
_version_ | 1783238345654009856 |
---|---|
author | Druelle, François Aerts, Peter D'Août, Kristiaan Moulin, Valérie Berillon, Gilles |
author_facet | Druelle, François Aerts, Peter D'Août, Kristiaan Moulin, Valérie Berillon, Gilles |
author_sort | Druelle, François |
collection | PubMed |
description | The linear dimensions and inertial characteristics of the body are important in locomotion and they change considerably during the ontogeny of animals, including humans. This longitudinal and ontogenetic study has produced the largest dataset to date of segmental morphometrics in a Catarrhini species, the olive baboon. The objectives of the study were to quantify the changes in body linear and inertial dimensions and to explore their (theoretical) mechanical significance for locomotion. We took full‐body measurements of captive individuals at regular intervals. Altogether, 14 females and 16 males were followed over a 7‐year period, i.e. from infancy to adulthood. Our results show that individual patterns of growth are very consistent and follow the general growth pattern previously described in olive baboons. Furthermore, we obtained similar growth curve structures for segment lengths and masses, although the respective time scales were slightly different. The most significant changes in body morphometrics occurred during the first 2 years of life and concerned the distal parts of the body. Females and males were similar in size and shape at birth. The rate and duration of growth produced substantial size‐related differences throughout ontogeny, while body shapes remained very similar between the sexes. We also observed significant age‐related variations in limb composition, with a proximal shift of the centre of mass within the limbs, mainly due to changes in mass distribution and in the length of distal segments. Finally, we observed what we hypothesize to be ‘early biomechanical optimization’ of the limbs for quadrupedal walking. This is due to a high degree of convergence between the limbs’ natural pendular periods in infants, which may facilitate the onset of quadrupedal walking. Furthermore, the mechanical significance of the morphological changes observed in growing baboons may be related to changing functional demands with the onset of autonomous (quadrupedal) locomotion. From a wider perspective, these data provide unique insights into questions surrounding both the processes of locomotor development in primates and how these processes might evolve. |
format | Online Article Text |
id | pubmed-5442150 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-54421502017-05-25 Segmental morphometrics of the olive baboon (Papio anubis): a longitudinal study from birth to adulthood Druelle, François Aerts, Peter D'Août, Kristiaan Moulin, Valérie Berillon, Gilles J Anat Original Articles The linear dimensions and inertial characteristics of the body are important in locomotion and they change considerably during the ontogeny of animals, including humans. This longitudinal and ontogenetic study has produced the largest dataset to date of segmental morphometrics in a Catarrhini species, the olive baboon. The objectives of the study were to quantify the changes in body linear and inertial dimensions and to explore their (theoretical) mechanical significance for locomotion. We took full‐body measurements of captive individuals at regular intervals. Altogether, 14 females and 16 males were followed over a 7‐year period, i.e. from infancy to adulthood. Our results show that individual patterns of growth are very consistent and follow the general growth pattern previously described in olive baboons. Furthermore, we obtained similar growth curve structures for segment lengths and masses, although the respective time scales were slightly different. The most significant changes in body morphometrics occurred during the first 2 years of life and concerned the distal parts of the body. Females and males were similar in size and shape at birth. The rate and duration of growth produced substantial size‐related differences throughout ontogeny, while body shapes remained very similar between the sexes. We also observed significant age‐related variations in limb composition, with a proximal shift of the centre of mass within the limbs, mainly due to changes in mass distribution and in the length of distal segments. Finally, we observed what we hypothesize to be ‘early biomechanical optimization’ of the limbs for quadrupedal walking. This is due to a high degree of convergence between the limbs’ natural pendular periods in infants, which may facilitate the onset of quadrupedal walking. Furthermore, the mechanical significance of the morphological changes observed in growing baboons may be related to changing functional demands with the onset of autonomous (quadrupedal) locomotion. From a wider perspective, these data provide unique insights into questions surrounding both the processes of locomotor development in primates and how these processes might evolve. John Wiley and Sons Inc. 2017-03-14 2017-06 /pmc/articles/PMC5442150/ /pubmed/28294323 http://dx.doi.org/10.1111/joa.12602 Text en © 2017 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Druelle, François Aerts, Peter D'Août, Kristiaan Moulin, Valérie Berillon, Gilles Segmental morphometrics of the olive baboon (Papio anubis): a longitudinal study from birth to adulthood |
title | Segmental morphometrics of the olive baboon (Papio anubis): a longitudinal study from birth to adulthood |
title_full | Segmental morphometrics of the olive baboon (Papio anubis): a longitudinal study from birth to adulthood |
title_fullStr | Segmental morphometrics of the olive baboon (Papio anubis): a longitudinal study from birth to adulthood |
title_full_unstemmed | Segmental morphometrics of the olive baboon (Papio anubis): a longitudinal study from birth to adulthood |
title_short | Segmental morphometrics of the olive baboon (Papio anubis): a longitudinal study from birth to adulthood |
title_sort | segmental morphometrics of the olive baboon (papio anubis): a longitudinal study from birth to adulthood |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5442150/ https://www.ncbi.nlm.nih.gov/pubmed/28294323 http://dx.doi.org/10.1111/joa.12602 |
work_keys_str_mv | AT druellefrancois segmentalmorphometricsoftheolivebaboonpapioanubisalongitudinalstudyfrombirthtoadulthood AT aertspeter segmentalmorphometricsoftheolivebaboonpapioanubisalongitudinalstudyfrombirthtoadulthood AT daoutkristiaan segmentalmorphometricsoftheolivebaboonpapioanubisalongitudinalstudyfrombirthtoadulthood AT moulinvalerie segmentalmorphometricsoftheolivebaboonpapioanubisalongitudinalstudyfrombirthtoadulthood AT berillongilles segmentalmorphometricsoftheolivebaboonpapioanubisalongitudinalstudyfrombirthtoadulthood |