Cargando…

Szász-Durrmeyer operators involving Boas-Buck polynomials of blending type

The present paper introduces the Szász-Durrmeyer type operators based on Boas-Buck type polynomials which include Brenke type polynomials, Sheffer polynomials and Appell polynomials considered by Sucu et al. (Abstr. Appl. Anal. 2012:680340, 2012). We establish the moments of the operator and a Voron...

Descripción completa

Detalles Bibliográficos
Autores principales: Sidharth, Manjari, Agrawal, PN, Araci, Serkan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5442253/
https://www.ncbi.nlm.nih.gov/pubmed/28603401
http://dx.doi.org/10.1186/s13660-017-1396-x
_version_ 1783238370221096960
author Sidharth, Manjari
Agrawal, PN
Araci, Serkan
author_facet Sidharth, Manjari
Agrawal, PN
Araci, Serkan
author_sort Sidharth, Manjari
collection PubMed
description The present paper introduces the Szász-Durrmeyer type operators based on Boas-Buck type polynomials which include Brenke type polynomials, Sheffer polynomials and Appell polynomials considered by Sucu et al. (Abstr. Appl. Anal. 2012:680340, 2012). We establish the moments of the operator and a Voronvskaja type asymptotic theorem and then proceed to studying the convergence of the operators with the help of Lipschitz type space and weighted modulus of continuity. Next, we obtain a direct approximation theorem with the aid of unified Ditzian-Totik modulus of smoothness. Furthermore, we study the approximation of functions whose derivatives are locally of bounded variation.
format Online
Article
Text
id pubmed-5442253
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Springer International Publishing
record_format MEDLINE/PubMed
spelling pubmed-54422532017-06-09 Szász-Durrmeyer operators involving Boas-Buck polynomials of blending type Sidharth, Manjari Agrawal, PN Araci, Serkan J Inequal Appl Research The present paper introduces the Szász-Durrmeyer type operators based on Boas-Buck type polynomials which include Brenke type polynomials, Sheffer polynomials and Appell polynomials considered by Sucu et al. (Abstr. Appl. Anal. 2012:680340, 2012). We establish the moments of the operator and a Voronvskaja type asymptotic theorem and then proceed to studying the convergence of the operators with the help of Lipschitz type space and weighted modulus of continuity. Next, we obtain a direct approximation theorem with the aid of unified Ditzian-Totik modulus of smoothness. Furthermore, we study the approximation of functions whose derivatives are locally of bounded variation. Springer International Publishing 2017-05-23 2017 /pmc/articles/PMC5442253/ /pubmed/28603401 http://dx.doi.org/10.1186/s13660-017-1396-x Text en © The Author(s) 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Research
Sidharth, Manjari
Agrawal, PN
Araci, Serkan
Szász-Durrmeyer operators involving Boas-Buck polynomials of blending type
title Szász-Durrmeyer operators involving Boas-Buck polynomials of blending type
title_full Szász-Durrmeyer operators involving Boas-Buck polynomials of blending type
title_fullStr Szász-Durrmeyer operators involving Boas-Buck polynomials of blending type
title_full_unstemmed Szász-Durrmeyer operators involving Boas-Buck polynomials of blending type
title_short Szász-Durrmeyer operators involving Boas-Buck polynomials of blending type
title_sort szász-durrmeyer operators involving boas-buck polynomials of blending type
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5442253/
https://www.ncbi.nlm.nih.gov/pubmed/28603401
http://dx.doi.org/10.1186/s13660-017-1396-x
work_keys_str_mv AT sidharthmanjari szaszdurrmeyeroperatorsinvolvingboasbuckpolynomialsofblendingtype
AT agrawalpn szaszdurrmeyeroperatorsinvolvingboasbuckpolynomialsofblendingtype
AT araciserkan szaszdurrmeyeroperatorsinvolvingboasbuckpolynomialsofblendingtype