Cargando…

An integrated model for detecting significant chromatin interactions from high-resolution Hi-C data

Here we present HiC-DC, a principled method to estimate the statistical significance (P values) of chromatin interactions from Hi-C experiments. HiC-DC uses hurdle negative binomial regression account for systematic sources of variation in Hi-C read counts—for example, distance-dependent random poly...

Descripción completa

Detalles Bibliográficos
Autores principales: Carty, Mark, Zamparo, Lee, Sahin, Merve, González, Alvaro, Pelossof, Raphael, Elemento, Olivier, Leslie, Christina S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5442359/
https://www.ncbi.nlm.nih.gov/pubmed/28513628
http://dx.doi.org/10.1038/ncomms15454
_version_ 1783238394952810496
author Carty, Mark
Zamparo, Lee
Sahin, Merve
González, Alvaro
Pelossof, Raphael
Elemento, Olivier
Leslie, Christina S.
author_facet Carty, Mark
Zamparo, Lee
Sahin, Merve
González, Alvaro
Pelossof, Raphael
Elemento, Olivier
Leslie, Christina S.
author_sort Carty, Mark
collection PubMed
description Here we present HiC-DC, a principled method to estimate the statistical significance (P values) of chromatin interactions from Hi-C experiments. HiC-DC uses hurdle negative binomial regression account for systematic sources of variation in Hi-C read counts—for example, distance-dependent random polymer ligation and GC content and mappability bias—and model zero inflation and overdispersion. Applied to high-resolution Hi-C data in a lymphoblastoid cell line, HiC-DC detects significant interactions at the sub-topologically associating domain level, identifying potential structural and regulatory interactions supported by CTCF binding sites, DNase accessibility, and/or active histone marks. CTCF-associated interactions are most strongly enriched in the middle genomic distance range (∼700 kb–1.5 Mb), while interactions involving actively marked DNase accessible elements are enriched both at short (<500 kb) and longer (>1.5 Mb) genomic distances. There is a striking enrichment of longer-range interactions connecting replication-dependent histone genes on chromosome 6, potentially representing the chromatin architecture at the histone locus body.
format Online
Article
Text
id pubmed-5442359
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-54423592017-06-02 An integrated model for detecting significant chromatin interactions from high-resolution Hi-C data Carty, Mark Zamparo, Lee Sahin, Merve González, Alvaro Pelossof, Raphael Elemento, Olivier Leslie, Christina S. Nat Commun Article Here we present HiC-DC, a principled method to estimate the statistical significance (P values) of chromatin interactions from Hi-C experiments. HiC-DC uses hurdle negative binomial regression account for systematic sources of variation in Hi-C read counts—for example, distance-dependent random polymer ligation and GC content and mappability bias—and model zero inflation and overdispersion. Applied to high-resolution Hi-C data in a lymphoblastoid cell line, HiC-DC detects significant interactions at the sub-topologically associating domain level, identifying potential structural and regulatory interactions supported by CTCF binding sites, DNase accessibility, and/or active histone marks. CTCF-associated interactions are most strongly enriched in the middle genomic distance range (∼700 kb–1.5 Mb), while interactions involving actively marked DNase accessible elements are enriched both at short (<500 kb) and longer (>1.5 Mb) genomic distances. There is a striking enrichment of longer-range interactions connecting replication-dependent histone genes on chromosome 6, potentially representing the chromatin architecture at the histone locus body. Nature Publishing Group 2017-05-17 /pmc/articles/PMC5442359/ /pubmed/28513628 http://dx.doi.org/10.1038/ncomms15454 Text en Copyright © 2017, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Carty, Mark
Zamparo, Lee
Sahin, Merve
González, Alvaro
Pelossof, Raphael
Elemento, Olivier
Leslie, Christina S.
An integrated model for detecting significant chromatin interactions from high-resolution Hi-C data
title An integrated model for detecting significant chromatin interactions from high-resolution Hi-C data
title_full An integrated model for detecting significant chromatin interactions from high-resolution Hi-C data
title_fullStr An integrated model for detecting significant chromatin interactions from high-resolution Hi-C data
title_full_unstemmed An integrated model for detecting significant chromatin interactions from high-resolution Hi-C data
title_short An integrated model for detecting significant chromatin interactions from high-resolution Hi-C data
title_sort integrated model for detecting significant chromatin interactions from high-resolution hi-c data
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5442359/
https://www.ncbi.nlm.nih.gov/pubmed/28513628
http://dx.doi.org/10.1038/ncomms15454
work_keys_str_mv AT cartymark anintegratedmodelfordetectingsignificantchromatininteractionsfromhighresolutionhicdata
AT zamparolee anintegratedmodelfordetectingsignificantchromatininteractionsfromhighresolutionhicdata
AT sahinmerve anintegratedmodelfordetectingsignificantchromatininteractionsfromhighresolutionhicdata
AT gonzalezalvaro anintegratedmodelfordetectingsignificantchromatininteractionsfromhighresolutionhicdata
AT pelossofraphael anintegratedmodelfordetectingsignificantchromatininteractionsfromhighresolutionhicdata
AT elementoolivier anintegratedmodelfordetectingsignificantchromatininteractionsfromhighresolutionhicdata
AT lesliechristinas anintegratedmodelfordetectingsignificantchromatininteractionsfromhighresolutionhicdata
AT cartymark integratedmodelfordetectingsignificantchromatininteractionsfromhighresolutionhicdata
AT zamparolee integratedmodelfordetectingsignificantchromatininteractionsfromhighresolutionhicdata
AT sahinmerve integratedmodelfordetectingsignificantchromatininteractionsfromhighresolutionhicdata
AT gonzalezalvaro integratedmodelfordetectingsignificantchromatininteractionsfromhighresolutionhicdata
AT pelossofraphael integratedmodelfordetectingsignificantchromatininteractionsfromhighresolutionhicdata
AT elementoolivier integratedmodelfordetectingsignificantchromatininteractionsfromhighresolutionhicdata
AT lesliechristinas integratedmodelfordetectingsignificantchromatininteractionsfromhighresolutionhicdata