Cargando…
An integrated model for detecting significant chromatin interactions from high-resolution Hi-C data
Here we present HiC-DC, a principled method to estimate the statistical significance (P values) of chromatin interactions from Hi-C experiments. HiC-DC uses hurdle negative binomial regression account for systematic sources of variation in Hi-C read counts—for example, distance-dependent random poly...
Autores principales: | Carty, Mark, Zamparo, Lee, Sahin, Merve, González, Alvaro, Pelossof, Raphael, Elemento, Olivier, Leslie, Christina S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5442359/ https://www.ncbi.nlm.nih.gov/pubmed/28513628 http://dx.doi.org/10.1038/ncomms15454 |
Ejemplares similares
-
HiC-DC+ enables systematic 3D interaction calls and differential analysis for Hi-C and HiChIP
por: Sahin, Merve, et al.
Publicado: (2021) -
Chromatin interaction–aware gene regulatory modeling with graph attention networks
por: Karbalayghareh, Alireza, et al.
Publicado: (2022) -
HiCORE: Hi-C Analysis for Identification of Core Chromatin Looping Regions with Higher Resolution
por: Lee, Hongwoo, et al.
Publicado: (2021) -
scHiCDiff: detecting differential chromatin interactions in single-cell Hi-C data
por: Liu, Huiling, et al.
Publicado: (2023) -
Binless normalization of Hi-C data provides significant interaction and difference detection independent of resolution
por: Spill, Yannick G., et al.
Publicado: (2019)