Cargando…

Evolution of Bacterial “Frenemies”

Chronic polymicrobial infections are associated with increased virulence compared to monospecies infections. However, our understanding of microbial dynamics during polymicrobial infection is limited. A recent study by Limoli and colleagues (D. H. Limoli, G. B. Whitfield, T. Kitao, M. L. Ivey, M. R....

Descripción completa

Detalles Bibliográficos
Autores principales: Darch, Sophie E., Ibberson, Carolyn B., Whiteley, Marvin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5442459/
https://www.ncbi.nlm.nih.gov/pubmed/28536291
http://dx.doi.org/10.1128/mBio.00675-17
Descripción
Sumario:Chronic polymicrobial infections are associated with increased virulence compared to monospecies infections. However, our understanding of microbial dynamics during polymicrobial infection is limited. A recent study by Limoli and colleagues (D. H. Limoli, G. B. Whitfield, T. Kitao, M. L. Ivey, M. R. Davis, Jr., et al., mBio 8:e00186-17, 2017, https://doi.org/10.1128/mBio.00186-17) provides insight into a mechanism that may contribute to the coexistence of Pseudomonas aeruginosa and Staphylococcus aureus in the cystic fibrosis (CF) lung. CF lung infections have frequently been used to investigate microbial interactions due to both the complex polymicrobial community and chronic nature of these infections. The hypothesis of Limoli et al. is that the conversion of P. aeruginosa to its mucoidy phenotype during chronic CF infection promotes coexistence by diminishing its ability to kill S. aureus. Highlighting a new facet of microbial interaction between two species that are traditionally thought of as competitors, this study provides a platform for studying community assembly in a relevant infection setting.