Cargando…
Capsule Production and Glucose Metabolism Dictate Fitness during Serratia marcescens Bacteremia
Serratia marcescens is an opportunistic pathogen that causes a range of human infections, including bacteremia, keratitis, wound infections, and urinary tract infections. Compared to other members of the Enterobacteriaceae family, the genetic factors that facilitate Serratia proliferation within the...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5442460/ https://www.ncbi.nlm.nih.gov/pubmed/28536292 http://dx.doi.org/10.1128/mBio.00740-17 |
_version_ | 1783238416102588416 |
---|---|
author | Anderson, Mark T. Mitchell, Lindsay A. Zhao, Lili Mobley, Harry L. T. |
author_facet | Anderson, Mark T. Mitchell, Lindsay A. Zhao, Lili Mobley, Harry L. T. |
author_sort | Anderson, Mark T. |
collection | PubMed |
description | Serratia marcescens is an opportunistic pathogen that causes a range of human infections, including bacteremia, keratitis, wound infections, and urinary tract infections. Compared to other members of the Enterobacteriaceae family, the genetic factors that facilitate Serratia proliferation within the mammalian host are less well defined. An in vivo screen of transposon insertion mutants identified 212 S. marcescens fitness genes that contribute to bacterial survival in a murine model of bloodstream infection. Among those identified, 11 genes were located within an 18-gene cluster encoding predicted extracellular polysaccharide biosynthesis proteins. A mutation in the wzx gene contained within this locus conferred a loss of fitness in competition infections with the wild-type strain and a reduction in extracellular uronic acids correlating with capsule loss. A second gene, pgm, encoding a phosphoglucomutase exhibited similar capsule-deficient phenotypes, linking central glucose metabolism with capsule production and fitness of Serratia during mammalian infection. Further evidence of the importance of central metabolism was obtained with a pfkA glycolytic mutant that demonstrated reduced replication in human serum and during murine infection. An MgtB magnesium transporter homolog was also among the fitness factors identified, and an S. marcescens mgtB mutant exhibited decreased growth in defined medium containing low concentrations of magnesium and was outcompeted ~10-fold by wild-type bacteria in mice. Together, these newly identified genes provide a more complete understanding of the specific requirements for S. marcescens survival in the mammalian host and provide a framework for further investigation of the means by which S. marcescens causes opportunistic infections. |
format | Online Article Text |
id | pubmed-5442460 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-54424602017-06-01 Capsule Production and Glucose Metabolism Dictate Fitness during Serratia marcescens Bacteremia Anderson, Mark T. Mitchell, Lindsay A. Zhao, Lili Mobley, Harry L. T. mBio Research Article Serratia marcescens is an opportunistic pathogen that causes a range of human infections, including bacteremia, keratitis, wound infections, and urinary tract infections. Compared to other members of the Enterobacteriaceae family, the genetic factors that facilitate Serratia proliferation within the mammalian host are less well defined. An in vivo screen of transposon insertion mutants identified 212 S. marcescens fitness genes that contribute to bacterial survival in a murine model of bloodstream infection. Among those identified, 11 genes were located within an 18-gene cluster encoding predicted extracellular polysaccharide biosynthesis proteins. A mutation in the wzx gene contained within this locus conferred a loss of fitness in competition infections with the wild-type strain and a reduction in extracellular uronic acids correlating with capsule loss. A second gene, pgm, encoding a phosphoglucomutase exhibited similar capsule-deficient phenotypes, linking central glucose metabolism with capsule production and fitness of Serratia during mammalian infection. Further evidence of the importance of central metabolism was obtained with a pfkA glycolytic mutant that demonstrated reduced replication in human serum and during murine infection. An MgtB magnesium transporter homolog was also among the fitness factors identified, and an S. marcescens mgtB mutant exhibited decreased growth in defined medium containing low concentrations of magnesium and was outcompeted ~10-fold by wild-type bacteria in mice. Together, these newly identified genes provide a more complete understanding of the specific requirements for S. marcescens survival in the mammalian host and provide a framework for further investigation of the means by which S. marcescens causes opportunistic infections. American Society for Microbiology 2017-05-23 /pmc/articles/PMC5442460/ /pubmed/28536292 http://dx.doi.org/10.1128/mBio.00740-17 Text en Copyright © 2017 Anderson et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Anderson, Mark T. Mitchell, Lindsay A. Zhao, Lili Mobley, Harry L. T. Capsule Production and Glucose Metabolism Dictate Fitness during Serratia marcescens Bacteremia |
title | Capsule Production and Glucose Metabolism Dictate Fitness during Serratia marcescens Bacteremia |
title_full | Capsule Production and Glucose Metabolism Dictate Fitness during Serratia marcescens Bacteremia |
title_fullStr | Capsule Production and Glucose Metabolism Dictate Fitness during Serratia marcescens Bacteremia |
title_full_unstemmed | Capsule Production and Glucose Metabolism Dictate Fitness during Serratia marcescens Bacteremia |
title_short | Capsule Production and Glucose Metabolism Dictate Fitness during Serratia marcescens Bacteremia |
title_sort | capsule production and glucose metabolism dictate fitness during serratia marcescens bacteremia |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5442460/ https://www.ncbi.nlm.nih.gov/pubmed/28536292 http://dx.doi.org/10.1128/mBio.00740-17 |
work_keys_str_mv | AT andersonmarkt capsuleproductionandglucosemetabolismdictatefitnessduringserratiamarcescensbacteremia AT mitchelllindsaya capsuleproductionandglucosemetabolismdictatefitnessduringserratiamarcescensbacteremia AT zhaolili capsuleproductionandglucosemetabolismdictatefitnessduringserratiamarcescensbacteremia AT mobleyharrylt capsuleproductionandglucosemetabolismdictatefitnessduringserratiamarcescensbacteremia |