Cargando…

Metabolomic Profiling of Pompe Disease‐Induced Pluripotent Stem Cell‐Derived Cardiomyocytes Reveals That Oxidative Stress Is Associated with Cardiac and Skeletal Muscle Pathology

Pompe disease (PD) is a lysosomal storage disease that is caused by a deficiency of the acid α‐glucosidase, which results in glycogen accumulation in the lysosome. The major clinical symptoms of PD include skeletal muscle weakness, respiratory failure, and cardiac hypertrophy. Based on its severity...

Descripción completa

Detalles Bibliográficos
Autores principales: Sato, Yohei, Kobayashi, Hiroshi, Higuchi, Takashi, Shimada, Yohta, Ida, Hiroyuki, Ohashi, Toya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5442755/
https://www.ncbi.nlm.nih.gov/pubmed/28170191
http://dx.doi.org/10.5966/sctm.2015-0409
Descripción
Sumario:Pompe disease (PD) is a lysosomal storage disease that is caused by a deficiency of the acid α‐glucosidase, which results in glycogen accumulation in the lysosome. The major clinical symptoms of PD include skeletal muscle weakness, respiratory failure, and cardiac hypertrophy. Based on its severity and symptom onset, PD is classified into infantile and late‐onset forms. Lysosomal accumulation of glycogen can promote many types of cellular dysfunction, such as autophagic dysfunction, endoplasmic reticulum stress, and abnormal calcium signaling within skeletal muscle. However, the disease mechanism underlying PD cardiomyopathy is not fully understood. Several researchers have shown that PD induced pluripotent stem cell (iPSC)‐derived cardiomyocytes successfully replicate the disease phenotype and are useful disease models. We have analyzed the metabolomic profile of late‐onset PD iPSC‐derived cardiomyocytes and found that oxidative stress and mitochondrial dysfunction are likely associated with cardiac complications. Furthermore, we have validated that these disease‐specific changes were also observed in the cardiomyocytes and skeletal muscle of a genetically engineered murine PD model. Oxidative stress may contribute to skeletal muscle and cardiomyocyte dysfunction in PD mice; however, NF‐E2‐related factor 2 was downregulated in cardiomyocytes and skeletal muscle, despite evidence of oxidative stress. We hypothesized that oxidative stress and an impaired antioxidative stress response mechanism may underlie the molecular pathology of late‐onset PD. Stem Cells Translational Medicine 2017;6:31–39