Cargando…

Efficiently Specified Ventral Midbrain Dopamine Neurons from Human Pluripotent Stem Cells Under Xeno‐Free Conditions Restore Motor Deficits in Parkinsonian Rodents

Recent studies have shown evidence for the functional integration of human pluripotent stem cell (hPSC)‐derived ventral midbrain dopamine (vmDA) neurons in animal models of Parkinson’s disease. Although these cells present a sustainable alternative to fetal mesencephalic grafts, a number of hurdles...

Descripción completa

Detalles Bibliográficos
Autores principales: Niclis, Jonathan C., Gantner, Carlos W., Alsanie, Walaa F., McDougall, Stuart J., Bye, Chris R., Elefanty, Andrew G., Stanley, Edouard G., Haynes, John M., Pouton, Colin W., Thompson, Lachlan H., Parish, Clare L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5442782/
https://www.ncbi.nlm.nih.gov/pubmed/28297587
http://dx.doi.org/10.5966/sctm.2016-0073
_version_ 1783238467223814144
author Niclis, Jonathan C.
Gantner, Carlos W.
Alsanie, Walaa F.
McDougall, Stuart J.
Bye, Chris R.
Elefanty, Andrew G.
Stanley, Edouard G.
Haynes, John M.
Pouton, Colin W.
Thompson, Lachlan H.
Parish, Clare L.
author_facet Niclis, Jonathan C.
Gantner, Carlos W.
Alsanie, Walaa F.
McDougall, Stuart J.
Bye, Chris R.
Elefanty, Andrew G.
Stanley, Edouard G.
Haynes, John M.
Pouton, Colin W.
Thompson, Lachlan H.
Parish, Clare L.
author_sort Niclis, Jonathan C.
collection PubMed
description Recent studies have shown evidence for the functional integration of human pluripotent stem cell (hPSC)‐derived ventral midbrain dopamine (vmDA) neurons in animal models of Parkinson’s disease. Although these cells present a sustainable alternative to fetal mesencephalic grafts, a number of hurdles require attention prior to clinical translation. These include the persistent use of xenogeneic reagents and challenges associated with scalability and storage of differentiated cells. In this study, we describe the first fully defined feeder‐ and xenogeneic‐free protocol for the generation of vmDA neurons from hPSCs and utilize two novel reporter knock‐in lines (LMX1A‐eGFP and PITX3‐eGFP) for in‐depth in vitro and in vivo tracking. Across multiple embryonic and induced hPSC lines, this “next generation” protocol consistently increases both the yield and proportion of vmDA neural progenitors (OTX2/FOXA2/LMX1A) and neurons (FOXA2/TH/PITX3) that display classical vmDA metabolic and electrophysiological properties. We identify the mechanism underlying these improvements and demonstrate clinical applicability with the first report of scalability and cryopreservation of bona fide vmDA progenitors at a time amenable to transplantation. Finally, transplantation of xeno‐free vmDA progenitors from LMX1A‐ and PITX3‐eGFP reporter lines into Parkinsonian rodents demonstrates improved engraftment outcomes and restoration of motor deficits. These findings provide important and necessary advancements for the translation of hPSC‐derived neurons into the clinic. Stem Cells Translational Medicine 2017;6:937–948
format Online
Article
Text
id pubmed-5442782
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-54427822017-06-15 Efficiently Specified Ventral Midbrain Dopamine Neurons from Human Pluripotent Stem Cells Under Xeno‐Free Conditions Restore Motor Deficits in Parkinsonian Rodents Niclis, Jonathan C. Gantner, Carlos W. Alsanie, Walaa F. McDougall, Stuart J. Bye, Chris R. Elefanty, Andrew G. Stanley, Edouard G. Haynes, John M. Pouton, Colin W. Thompson, Lachlan H. Parish, Clare L. Stem Cells Transl Med Translational Research Articles and Reviews Recent studies have shown evidence for the functional integration of human pluripotent stem cell (hPSC)‐derived ventral midbrain dopamine (vmDA) neurons in animal models of Parkinson’s disease. Although these cells present a sustainable alternative to fetal mesencephalic grafts, a number of hurdles require attention prior to clinical translation. These include the persistent use of xenogeneic reagents and challenges associated with scalability and storage of differentiated cells. In this study, we describe the first fully defined feeder‐ and xenogeneic‐free protocol for the generation of vmDA neurons from hPSCs and utilize two novel reporter knock‐in lines (LMX1A‐eGFP and PITX3‐eGFP) for in‐depth in vitro and in vivo tracking. Across multiple embryonic and induced hPSC lines, this “next generation” protocol consistently increases both the yield and proportion of vmDA neural progenitors (OTX2/FOXA2/LMX1A) and neurons (FOXA2/TH/PITX3) that display classical vmDA metabolic and electrophysiological properties. We identify the mechanism underlying these improvements and demonstrate clinical applicability with the first report of scalability and cryopreservation of bona fide vmDA progenitors at a time amenable to transplantation. Finally, transplantation of xeno‐free vmDA progenitors from LMX1A‐ and PITX3‐eGFP reporter lines into Parkinsonian rodents demonstrates improved engraftment outcomes and restoration of motor deficits. These findings provide important and necessary advancements for the translation of hPSC‐derived neurons into the clinic. Stem Cells Translational Medicine 2017;6:937–948 John Wiley and Sons Inc. 2016-10-14 2017-03 /pmc/articles/PMC5442782/ /pubmed/28297587 http://dx.doi.org/10.5966/sctm.2016-0073 Text en © 2016 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Translational Research Articles and Reviews
Niclis, Jonathan C.
Gantner, Carlos W.
Alsanie, Walaa F.
McDougall, Stuart J.
Bye, Chris R.
Elefanty, Andrew G.
Stanley, Edouard G.
Haynes, John M.
Pouton, Colin W.
Thompson, Lachlan H.
Parish, Clare L.
Efficiently Specified Ventral Midbrain Dopamine Neurons from Human Pluripotent Stem Cells Under Xeno‐Free Conditions Restore Motor Deficits in Parkinsonian Rodents
title Efficiently Specified Ventral Midbrain Dopamine Neurons from Human Pluripotent Stem Cells Under Xeno‐Free Conditions Restore Motor Deficits in Parkinsonian Rodents
title_full Efficiently Specified Ventral Midbrain Dopamine Neurons from Human Pluripotent Stem Cells Under Xeno‐Free Conditions Restore Motor Deficits in Parkinsonian Rodents
title_fullStr Efficiently Specified Ventral Midbrain Dopamine Neurons from Human Pluripotent Stem Cells Under Xeno‐Free Conditions Restore Motor Deficits in Parkinsonian Rodents
title_full_unstemmed Efficiently Specified Ventral Midbrain Dopamine Neurons from Human Pluripotent Stem Cells Under Xeno‐Free Conditions Restore Motor Deficits in Parkinsonian Rodents
title_short Efficiently Specified Ventral Midbrain Dopamine Neurons from Human Pluripotent Stem Cells Under Xeno‐Free Conditions Restore Motor Deficits in Parkinsonian Rodents
title_sort efficiently specified ventral midbrain dopamine neurons from human pluripotent stem cells under xeno‐free conditions restore motor deficits in parkinsonian rodents
topic Translational Research Articles and Reviews
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5442782/
https://www.ncbi.nlm.nih.gov/pubmed/28297587
http://dx.doi.org/10.5966/sctm.2016-0073
work_keys_str_mv AT niclisjonathanc efficientlyspecifiedventralmidbraindopamineneuronsfromhumanpluripotentstemcellsunderxenofreeconditionsrestoremotordeficitsinparkinsonianrodents
AT gantnercarlosw efficientlyspecifiedventralmidbraindopamineneuronsfromhumanpluripotentstemcellsunderxenofreeconditionsrestoremotordeficitsinparkinsonianrodents
AT alsaniewalaaf efficientlyspecifiedventralmidbraindopamineneuronsfromhumanpluripotentstemcellsunderxenofreeconditionsrestoremotordeficitsinparkinsonianrodents
AT mcdougallstuartj efficientlyspecifiedventralmidbraindopamineneuronsfromhumanpluripotentstemcellsunderxenofreeconditionsrestoremotordeficitsinparkinsonianrodents
AT byechrisr efficientlyspecifiedventralmidbraindopamineneuronsfromhumanpluripotentstemcellsunderxenofreeconditionsrestoremotordeficitsinparkinsonianrodents
AT elefantyandrewg efficientlyspecifiedventralmidbraindopamineneuronsfromhumanpluripotentstemcellsunderxenofreeconditionsrestoremotordeficitsinparkinsonianrodents
AT stanleyedouardg efficientlyspecifiedventralmidbraindopamineneuronsfromhumanpluripotentstemcellsunderxenofreeconditionsrestoremotordeficitsinparkinsonianrodents
AT haynesjohnm efficientlyspecifiedventralmidbraindopamineneuronsfromhumanpluripotentstemcellsunderxenofreeconditionsrestoremotordeficitsinparkinsonianrodents
AT poutoncolinw efficientlyspecifiedventralmidbraindopamineneuronsfromhumanpluripotentstemcellsunderxenofreeconditionsrestoremotordeficitsinparkinsonianrodents
AT thompsonlachlanh efficientlyspecifiedventralmidbraindopamineneuronsfromhumanpluripotentstemcellsunderxenofreeconditionsrestoremotordeficitsinparkinsonianrodents
AT parishclarel efficientlyspecifiedventralmidbraindopamineneuronsfromhumanpluripotentstemcellsunderxenofreeconditionsrestoremotordeficitsinparkinsonianrodents