Cargando…
Exosomes from mesenchymal stem cells induce the conversion of hepatocytes into progenitor oval cells
BACKGROUND: We previously reported that mesenchymal stem cells (MSCs) possess therapeutic effects in a murine model of carbon tetrachloride-induced acute liver failure. In the study, we observed that the majority of repopulated hepatocytes were of recipient origin and were adjacent to transplanted M...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5442870/ https://www.ncbi.nlm.nih.gov/pubmed/28535778 http://dx.doi.org/10.1186/s13287-017-0560-z |
Sumario: | BACKGROUND: We previously reported that mesenchymal stem cells (MSCs) possess therapeutic effects in a murine model of carbon tetrachloride-induced acute liver failure. In the study, we observed that the majority of repopulated hepatocytes were of recipient origin and were adjacent to transplanted MSCs; only a low percentage of repopulated hepatocytes were from transplanted MSCs. The findings indicate that MSCs guided the formation of new hepatocytes. Exosomes are important messengers for paracrine signaling delivery. The aim of this study is to investigate the paracrine effects, in particular, the effects of exosomes from MSCs, on hepatocytes. METHODS: Mature hepatocytes were isolated from murine liver by a two-step perfusion method with collagenase digestion. MSCs were obtained from murine bone marrow, and conditioned medium (CM) from MSC culture was then collected. Time-lapse imaging was used for observation of cell morphological change induced by CM on hepatocytes. In addition, expression of markers for hepatic progenitors including oval cells, intrahepatic stem cells, and hepatoblasts were analyzed. RESULTS: Treatment with the CM promoted the formation of small oval cells from hepatocytes; time-lapse imaging demonstrated the change from epithelial to oval cell morphology at the single hepatocyte level. Additionally, expression of EpCAM and OC2, markers of hepatic oval cells, was upregulated. Also, the number of EpCAM(high) cells was increased after CM treatment. The EpCAM(high) small oval cells possessed colony-formation ability; they also expressed cytokeratin 18 and were able to store glycogen upon induction of hepatic differentiation. Furthermore, exosomes from MSC-CM could induce the conversion of mature hepatocytes to EpCAM(high) small oval cells. CONCLUSIONS: In summary, paracrine signaling through exosomes from MSCs induce the conversion of hepatocytes into hepatic oval cells, a mechanism of action which has not been reported regarding the therapeutic potentials of MSCs in liver regeneration. Exosomes from MSCs may therefore be used to treat liver diseases. Further studies are required for proof of concept of this approach. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13287-017-0560-z) contains supplementary material, which is available to authorized users. |
---|