Cargando…

Clarifications on Continuous Renal Replacement Therapy and Hemodynamics

OBJECTIVE: Continuous renal replacement therapy (CRRT) is a continuous process of bedside blood purification which is widely used in the treatment of acute kidney injury (AKI) and for fluid management. However, since AKI and fluid overload are often found to be associated with hemodynamic abnormalit...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Xiao-Ting, Wang, Cui, Zhang, Hong-Min, Liu, Da-Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5443032/
https://www.ncbi.nlm.nih.gov/pubmed/28485326
http://dx.doi.org/10.4103/0366-6999.205863
Descripción
Sumario:OBJECTIVE: Continuous renal replacement therapy (CRRT) is a continuous process of bedside blood purification which is widely used in the treatment of acute kidney injury (AKI) and for fluid management. However, since AKI and fluid overload are often found to be associated with hemodynamic abnormalities, determining the relationship between CRRT and hemodynamics remains a challenge in the treatment of critically ill patients. The aim of this review was to summarize key points in the relationship between CRRT and hemodynamics and to understand and monitor renal hemodynamics in critically ill patients, especially those with AKI. DATA SOURCES: This review was based on data in articles published in the PubMed databases up to January 30, 2017, with the following keywords: “continuous renal replacement therapy,” “Hemodynamics,” and “Acute kidney injury.” STUDY SELECTION: Original articles and critical reviews on CRRT were selected for this review. RESULTS: CRRT might treat AKI by hemodynamic therapy, and it was an important form of hemodynamic therapy. The targets of hemodynamic therapy should be established when using CRRT. Therefore, hemodynamic management and stability were very important during CRRT. Most studies suggested that renal hemodynamics should be clearly identified. CONCLUSIONS: CRRT is not only a replacement for organ function, but an important form of hemodynamic therapy. Improved hemodynamic management of critically ill patients can be achieved by establishing specific therapeutic hemodynamic targets and maintaining circulatory stability during CRRT. Over the long term, observation of renal hemodynamics will provide greater opportunities for the progression of CRRT hemodynamic therapy.