Cargando…
Angelica Dahurica ethanolic extract improves impaired wound healing by activating angiogenesis in diabetes
Abnormal angiogenesis plays an important role in impaired wound healing and development of chronic wounds in diabetes mellitus. Angelica dahurica radix is a common traditional Chinese medicine with wide spectrum medicinal effects. In this study, we analyzed the potential roles of Angelica dahurica e...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5443501/ https://www.ncbi.nlm.nih.gov/pubmed/28542422 http://dx.doi.org/10.1371/journal.pone.0177862 |
Sumario: | Abnormal angiogenesis plays an important role in impaired wound healing and development of chronic wounds in diabetes mellitus. Angelica dahurica radix is a common traditional Chinese medicine with wide spectrum medicinal effects. In this study, we analyzed the potential roles of Angelica dahurica ethanolic extract (ADEE) in correcting impaired angiogenesis and delayed wound healing in diabetes by using streptozotocin-induced diabetic rats. ADEE treatment accelerated diabetic wound healing through inducing angiogenesis and granulation tissue formation. The angiogenic property of ADEE was subsequently verified ex vivo using aortic ring assays. Furthermore, we investigated the in vitro angiogenic activity of ADEE and its underlying mechanisms using human umbilical vein endothelial cells. ADEE treatment induced HUVECs proliferation, migration, and tube formation, which are typical phenomena of angiogenesis, in dose-dependent manners. These effects were associated with activation of angiogenic signal modulators, including extracellular signal-regulated kinase 1/2 (ERK1/2), Akt, endothelial nitric oxide synthase (eNOS) as well as increased NO production, and independent of affecting VEGF expression. ADEE-induced angiogenic events were inhibited by the MEK inhibitor PD98059, the PI3K inhibitor Wortmannin, and the eNOS inhibitor L-NAME. Our findings highlight an angiogenic role of ADEE and its ability to protect against impaired wound healing, which may be developed as a promising therapy for impaired angiogenesis and delayed wound healing in diabetes. |
---|