Cargando…

In-vivo oxidized albumin– a pro-inflammatory agent in hypoalbuminemia

Hypoalbuminemia of Hemodialysis (HD) patients is an independent cardiovascular risk factor, however, there is no mechanistic explanation between hypoalbuminemia and vascular injury. In the event of oxidative stress and inflammation to which HD patients are exposed, albumin is oxidized and undetected...

Descripción completa

Detalles Bibliográficos
Autores principales: Magzal, Faiga, Sela, Shifra, Szuchman-Sapir, Andrea, Tamir, Snait, Michelis, Regina, Kristal, Batya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5443520/
https://www.ncbi.nlm.nih.gov/pubmed/28542419
http://dx.doi.org/10.1371/journal.pone.0177799
Descripción
Sumario:Hypoalbuminemia of Hemodialysis (HD) patients is an independent cardiovascular risk factor, however, there is no mechanistic explanation between hypoalbuminemia and vascular injury. In the event of oxidative stress and inflammation to which HD patients are exposed, albumin is oxidized and undetected by common laboratory methods, rendering an apparent hypoalbuminemia. We wanted to show that these circulating modified oxidized albumin molecules cause direct vascular damage, mediating inflammation. Once these in-vivo albumin modifications were reduced in- vitro, the apparent hypoalbuminemia concomitantly with its inflammatory effects, were eliminated. Albumin modification profiles from 14 healthy controls (HC) and 14 HD patients were obtained by mass spectrometry (MS) analyses before and after reduction in- vitro, using redox agent 1,4 dithiothreitol (DTT). Their inflammatory effects were explored by exposing human umbilical endothelial cells (HUVEC) to all these forms of albumin. Albumin separated from hypoalbuminemic HD patients increased endothelial mRNA expression of cytokines and adhesion molecules, and augmented secretion of IL-6. This endothelial inflammatory state was almost fully reverted by exposing HUVEC to the in-vitro reduced HD albumin. MS profile of albumin modifications peaks was similar between HD and HC, but the intensities of the various peaks were significantly different. Abolishing the reversible oxidative modifications by DTT prevented endothelial injury and increased albumin levels. The irreversible modifications such as glycation and sulfonation show low intensities in HD albumin profiles and are nearly unobserved in HC. We showed, for the first time, a mechanistic link between hypoalbuminemia and the pro-inflammatory properties of in-vivo oxidized albumin, initiating vascular injury.