Cargando…

Effect of excitation power on voltage induced local magnetization dynamics in an ultrathin CoFeB film

Voltage or electric field induced magnetization dynamics promises low power spintronics devices. For successful operation of some spintronics devices such as magnetic oscillators and magnetization switching devices a clear understanding of nonlinear magnetization dynamics is required. Here, we repor...

Descripción completa

Detalles Bibliográficos
Autores principales: Rana, Bivas, Fukuma, Yasuhiro, Miura, Katsuya, Takahashi, Hiromasa, Otani, YoshiChika
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5443791/
https://www.ncbi.nlm.nih.gov/pubmed/28539602
http://dx.doi.org/10.1038/s41598-017-02427-3
Descripción
Sumario:Voltage or electric field induced magnetization dynamics promises low power spintronics devices. For successful operation of some spintronics devices such as magnetic oscillators and magnetization switching devices a clear understanding of nonlinear magnetization dynamics is required. Here, we report a detailed experimental and micromagnetic simulation study about the effect of excitation power on voltage induced local magnetization dynamics in an ultrathin CoFeB film. Experimental results show that the resonance line-width and frequency remains constant, whereas cone angle of the magnetization precession increases linearly with square-root of excitation power below threshold value, known as linear excitation regime. Above threshold power, the dynamics enters into nonlinear regime where resonance line-width monotonically increases and resonance frequency monotonically decreases with increasing excitation power. Simulation results reveal that a strong nonlinear and incoherent magnetization dynamics are observed in our experiment above the threshold power which reduces dynamic magnetic signal by suppressing large cone angle of magnetization precession. Moreover, a significant transfer of spin angular momentum from uniform FMR mode to its degenerate spin waves outside of excitation area further restrict the cone angle of precession within only few degrees in our device. Our results will be very useful to develop all-voltage-controlled spintronics devices.