Cargando…

Toxoplasma gondii MAF1b Binds the Host Cell MIB Complex To Mediate Mitochondrial Association

Many diverse intracellular pathogens, such as Legionella pneumophila, Chlamydia psittaci, Encephalitozoon sp., and Toxoplasma gondii, manipulate and relocate host cell organelles, including mitochondria. Toxoplasma tachyzoites use a secreted protein, mitochondrial association factor 1b (MAF1b), to d...

Descripción completa

Detalles Bibliográficos
Autores principales: Kelly, Felice D., Wei, Brian M., Cygan, Alicja M., Parker, Michelle L., Boulanger, Martin J., Boothroyd, John C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5444011/
https://www.ncbi.nlm.nih.gov/pubmed/28567444
http://dx.doi.org/10.1128/mSphere.00183-17
_version_ 1783238659921674240
author Kelly, Felice D.
Wei, Brian M.
Cygan, Alicja M.
Parker, Michelle L.
Boulanger, Martin J.
Boothroyd, John C.
author_facet Kelly, Felice D.
Wei, Brian M.
Cygan, Alicja M.
Parker, Michelle L.
Boulanger, Martin J.
Boothroyd, John C.
author_sort Kelly, Felice D.
collection PubMed
description Many diverse intracellular pathogens, such as Legionella pneumophila, Chlamydia psittaci, Encephalitozoon sp., and Toxoplasma gondii, manipulate and relocate host cell organelles, including mitochondria. Toxoplasma tachyzoites use a secreted protein, mitochondrial association factor 1b (MAF1b), to drive the association between the host mitochondria and the membrane of the parasitophorous vacuole, in which the parasites grow. The identity of the host partner in this interaction, however, has not previously been identified. By exogenously expressing tagged MAF1b in mouse embryonic fibroblasts, we were able to isolate host cell proteins that specifically interact with MAF1b. We then verified these interactions in the MAF1b-expressing fibroblasts, as well as in the context of parasite infection in human fibroblasts and HeLa cells. The results show that a host cell mitochondrial complex, the mitochondrial intermembrane space bridging (MIB) complex, specifically interacts with MAF1b. We further demonstrate that a version of MAF1b that is deficient in host-mitochondrial association does not efficiently coprecipitate the MIB complex. Validation of the importance of the MAF1b-MIB interaction came from showing that knockdown of two MIB complex components, MIC60 and SAM50, substantially reduces mitochondrial association with the parasitophorous vacuole membrane. This interaction between a secreted membrane-integral parasite protein and a membrane-bound complex of a host organelle represents the first instance of organelle relocalization in which both the host and pathogen molecules are known and provides the foundation for more detailed biochemical studies. IMPORTANCE Parasites interact intimately with their hosts, and the interactions shape both parties. The common human parasite Toxoplasma gondii replicates exclusively in a vacuole in a host cell and alters its host cell’s environment through secreted proteins. One of these secreted proteins, MAF1b, acts to concentrate mitochondria around the parasite’s vacuole, and this relocalization alters the host immune response. Many other intracellular pathogens also recruit host mitochondria, but the identities of the partners that mediate this interaction have not previously been described in any infection. Here, we show that Toxoplasma MAF1b binds to the multifunctional MIB protein complex on the host mitochondria. Reducing the levels of the proteins in this mitochondrial complex reduces the close association of host cell mitochondria and the parasite’s vacuole. This work provides new insight into a key host-pathogen interaction and identifies possible targets for future therapeutic intervention as well as a more molecular understanding of important biology.
format Online
Article
Text
id pubmed-5444011
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-54440112017-05-31 Toxoplasma gondii MAF1b Binds the Host Cell MIB Complex To Mediate Mitochondrial Association Kelly, Felice D. Wei, Brian M. Cygan, Alicja M. Parker, Michelle L. Boulanger, Martin J. Boothroyd, John C. mSphere Research Article Many diverse intracellular pathogens, such as Legionella pneumophila, Chlamydia psittaci, Encephalitozoon sp., and Toxoplasma gondii, manipulate and relocate host cell organelles, including mitochondria. Toxoplasma tachyzoites use a secreted protein, mitochondrial association factor 1b (MAF1b), to drive the association between the host mitochondria and the membrane of the parasitophorous vacuole, in which the parasites grow. The identity of the host partner in this interaction, however, has not previously been identified. By exogenously expressing tagged MAF1b in mouse embryonic fibroblasts, we were able to isolate host cell proteins that specifically interact with MAF1b. We then verified these interactions in the MAF1b-expressing fibroblasts, as well as in the context of parasite infection in human fibroblasts and HeLa cells. The results show that a host cell mitochondrial complex, the mitochondrial intermembrane space bridging (MIB) complex, specifically interacts with MAF1b. We further demonstrate that a version of MAF1b that is deficient in host-mitochondrial association does not efficiently coprecipitate the MIB complex. Validation of the importance of the MAF1b-MIB interaction came from showing that knockdown of two MIB complex components, MIC60 and SAM50, substantially reduces mitochondrial association with the parasitophorous vacuole membrane. This interaction between a secreted membrane-integral parasite protein and a membrane-bound complex of a host organelle represents the first instance of organelle relocalization in which both the host and pathogen molecules are known and provides the foundation for more detailed biochemical studies. IMPORTANCE Parasites interact intimately with their hosts, and the interactions shape both parties. The common human parasite Toxoplasma gondii replicates exclusively in a vacuole in a host cell and alters its host cell’s environment through secreted proteins. One of these secreted proteins, MAF1b, acts to concentrate mitochondria around the parasite’s vacuole, and this relocalization alters the host immune response. Many other intracellular pathogens also recruit host mitochondria, but the identities of the partners that mediate this interaction have not previously been described in any infection. Here, we show that Toxoplasma MAF1b binds to the multifunctional MIB protein complex on the host mitochondria. Reducing the levels of the proteins in this mitochondrial complex reduces the close association of host cell mitochondria and the parasite’s vacuole. This work provides new insight into a key host-pathogen interaction and identifies possible targets for future therapeutic intervention as well as a more molecular understanding of important biology. American Society for Microbiology 2017-05-24 /pmc/articles/PMC5444011/ /pubmed/28567444 http://dx.doi.org/10.1128/mSphere.00183-17 Text en Copyright © 2017 Kelly et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
Kelly, Felice D.
Wei, Brian M.
Cygan, Alicja M.
Parker, Michelle L.
Boulanger, Martin J.
Boothroyd, John C.
Toxoplasma gondii MAF1b Binds the Host Cell MIB Complex To Mediate Mitochondrial Association
title Toxoplasma gondii MAF1b Binds the Host Cell MIB Complex To Mediate Mitochondrial Association
title_full Toxoplasma gondii MAF1b Binds the Host Cell MIB Complex To Mediate Mitochondrial Association
title_fullStr Toxoplasma gondii MAF1b Binds the Host Cell MIB Complex To Mediate Mitochondrial Association
title_full_unstemmed Toxoplasma gondii MAF1b Binds the Host Cell MIB Complex To Mediate Mitochondrial Association
title_short Toxoplasma gondii MAF1b Binds the Host Cell MIB Complex To Mediate Mitochondrial Association
title_sort toxoplasma gondii maf1b binds the host cell mib complex to mediate mitochondrial association
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5444011/
https://www.ncbi.nlm.nih.gov/pubmed/28567444
http://dx.doi.org/10.1128/mSphere.00183-17
work_keys_str_mv AT kellyfeliced toxoplasmagondiimaf1bbindsthehostcellmibcomplextomediatemitochondrialassociation
AT weibrianm toxoplasmagondiimaf1bbindsthehostcellmibcomplextomediatemitochondrialassociation
AT cyganalicjam toxoplasmagondiimaf1bbindsthehostcellmibcomplextomediatemitochondrialassociation
AT parkermichellel toxoplasmagondiimaf1bbindsthehostcellmibcomplextomediatemitochondrialassociation
AT boulangermartinj toxoplasmagondiimaf1bbindsthehostcellmibcomplextomediatemitochondrialassociation
AT boothroydjohnc toxoplasmagondiimaf1bbindsthehostcellmibcomplextomediatemitochondrialassociation