Cargando…
Modeling long-term human activeness using recurrent neural networks for biometric data
BACKGROUND: With the invention of fitness trackers, it has been possible to continuously monitor a user’s biometric data such as heart rates, number of footsteps taken, and amount of calories burned. This paper names the time series of these three types of biometric data, the user’s “activeness”, an...
Autores principales: | Kim, Zae Myung, Oh, Hyungrai, Kim, Han-Gyu, Lim, Chae-Gyun, Oh, Kyo-Joong, Choi, Ho-Jin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5444042/ https://www.ncbi.nlm.nih.gov/pubmed/28539116 http://dx.doi.org/10.1186/s12911-017-0453-1 |
Ejemplares similares
-
Investigating the Impact of Possession-Way of a Smartphone on Action Recognition †
por: Kim, Zae Myung, et al.
Publicado: (2016) -
High Recurrence Rate of Idiopathic Peptic Ulcers in Long-Term Follow-up
por: Yoon, Hyuk, et al.
Publicado: (2013) -
Texture-Based Neural Network Model for Biometric Dental Applications
por: Saleh, Omnia, et al.
Publicado: (2022) -
Comparison of ocular biometric measurements in patients with cataract using three swept-source optical coherence tomography devices
por: Oh, Richul, et al.
Publicado: (2021) -
Long-Term Effects of Helicobacter pylori Eradication on Metachronous Gastric Cancer Development
por: Han, Seung Jun, et al.
Publicado: (2018)