Cargando…

Bioluminescence Method for In Vitro Screening of Plasmodium Transmission-Blocking Compounds

The sporogonic stage of the life cycle of Plasmodium spp., the causative agents of malaria, occurs inside the parasite's mosquito vector, where a process of fertilization, meiosis, and mitotic divisions culminates in the generation of large numbers of mammalian-infective sporozoites. Efforts to...

Descripción completa

Detalles Bibliográficos
Autores principales: Azevedo, Raquel, Markovic, Marija, Machado, Marta, Franke-Fayard, Blandine, Mendes, António M., Prudêncio, Miguel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5444155/
https://www.ncbi.nlm.nih.gov/pubmed/28348156
http://dx.doi.org/10.1128/AAC.02699-16
Descripción
Sumario:The sporogonic stage of the life cycle of Plasmodium spp., the causative agents of malaria, occurs inside the parasite's mosquito vector, where a process of fertilization, meiosis, and mitotic divisions culminates in the generation of large numbers of mammalian-infective sporozoites. Efforts to cultivate Plasmodium mosquito stages in vitro have proved challenging and yielded only moderate success. Here, we describe a methodology that simplifies the in vitro screening of much-needed transmission-blocking (TB) compounds employing a bioluminescence-based method to monitor the in vitro development of sporogonic stages of the rodent malaria parasite Plasmodium berghei. Our proof-of-principle assessment of the in vitro TB activity of several commonly used antimalarial compounds identified cycloheximide, thiostrepton, and atovaquone as the most active compounds against the parasite's sporogonic stages. The TB activity of these compounds was further confirmed by in vivo studies that validated our newly developed in vitro approach to TB compound screening.